(本小題滿分12分)如圖,在三棱柱中.

(1)若,證明:平面平面
(2)設(shè)的中點(diǎn),上的一點(diǎn),
平面,求的值.
(1)略;(2)
解:(1)因?yàn)?i>BB1=BC,所以側(cè)面BCC1B1是菱形,所以B1CBC1.  
又因?yàn)?i>B1CA1B,且A1BBC1=B,所以BC1⊥平面A1BC1, …………………5分
B1C平面AB1C,所以平面AB1C⊥平面A1BC1.……………………………6分
(2)設(shè)B1DBC1于點(diǎn)F,連結(jié)EF,則平面A1BC1∩平面B1DEEF
因?yàn)?i>A1B//平面B1DEA1B平面A1BC1,所以A1B//EF.   …………………9分
所以
又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182829351312.gif" style="vertical-align:middle;" />=,所以. ………………………………………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐P-ABCD的底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=CD,EPC的中點(diǎn)。

(1)證明PA平面BDE;
(2)求二面角B-DE-C的平面角的余弦值;
(3)在棱PB上是否存在點(diǎn)F,使PB⊥平面DEF?
證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知三棱錐中,底面為邊長(zhǎng)等于2的等邊三角形,垂直于底面=1,那么直線與平面所成角的正弦值為 
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖, PA⊥平面ABCD,四邊形ABCD是矩形,點(diǎn)E在邊AB上,F(xiàn)為PD的中點(diǎn),AF∥平面PCE,二面角P-CD-B為450,AD=2,CD=3.

(1)試確定E點(diǎn)位置; (2)求直線AF到平面PCE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如右圖所示,ABCD-A1B1C1D1是正四棱柱,側(cè)棱長(zhǎng)為1,底面邊長(zhǎng)為2,E是棱BC的中點(diǎn).

(1)求證:BD1∥平面C1DE;
(2)求三棱錐D-D1BC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在直三棱柱ABC—ABC中,分別為棱AC、AB上的動(dòng)點(diǎn)(不包括端點(diǎn)),若則線段DF長(zhǎng)度的取值范圍為
A.    B.   C.     D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,正方體中,點(diǎn)上運(yùn)動(dòng),給出下列四個(gè)命題:
 
①三棱錐的體積不變; ②;
∥平面;           ④平面;
其中正確的命題個(gè)數(shù)有(    )                                                                            
A.個(gè) B.個(gè) C.個(gè) D.個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

空間中直線與直線的位置關(guān)系有       、        、         

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

a、b是兩條異面直線,A是不在a、b上的點(diǎn),則下列結(jié)論成立的是(  )
A.過(guò)A有且只有一個(gè)平面平行于a、b
B.過(guò)A至少有一個(gè)平面平行于a、b
C.過(guò)A有無(wú)數(shù)個(gè)平面平行于a、b
D.過(guò)A且平行a、b的平面可能不存在

查看答案和解析>>

同步練習(xí)冊(cè)答案