如右圖所示,ABCD-A1B1C1D1是正四棱柱,側棱長為1,底面邊長為2,E是棱BC的中點.

(1)求證:BD1∥平面C1DE;
(2)求三棱錐D-D1BC的體積.
(1)證明:連接D1C交DC1于F,連結EF.
∵ABCD—A1B1C1D1為正四棱柱,
∴四邊形DCC1D1為矩形,
∴F為D1C中點.
在△CD1B中,∵E為BC中點,∴EF∥D1B.
又∵D1B?面C1DE,EF?面C1DE,∴BD1∥平面C1DE.
(2)連結BD,VD-D1BC=VD1-DBC,∵AC′是正四棱柱,
∴D1D⊥面DBC.
∵DC=BC=2,∴SBCD=×2×2=2.
VD1-DBC=·SBCD·D1D=×2×1=.
∴三棱錐D-D1BC的體積為.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

日常生活中,常用到的螺母可以看成一個組合體,其結構特征是
A.一個棱柱中挖去一個棱柱B.一個棱柱中挖去一個圓柱
C.一個圓柱中挖去一個棱錐D.一個棱臺中挖去一個圓柱

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題12分)如圖,在四棱錐P—ABCD中, CD∥AB, AD⊥AB,  BC⊥PC ,
(1)求證:PA⊥BC
(2)試在線段PB上找一點M,使CM∥平面PAD, 并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,已知斜三棱柱的底面是直角三角形,,側棱與底面所成的角為,點在底面上的射影落在上.

(1)若點恰為的中點,且,求的值.

(2)若,且當時,求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,在三棱柱中.

(1)若,,證明:平面平面;
(2)設的中點,上的一點,
平面,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如右圖所示,已知四邊形ABCD為直角梯形,AD∥BC,∠ABC=90°,PA⊥平面AC,且PA=AD=AB=1,BC=2.

(1)求PC的長;
(2)求異面直線PC與BD所成角的余弦值的大小

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,四棱錐P-ABCD中,PD⊥平面ABCD,PA與平面ABCD所成的角為60°,在四邊形ABCD中,∠D=∠DAB=90°,AB=4,CD=1,AD=2.
(1)建立適當?shù)淖鴺讼,并寫出點B,P的坐標;
(2)求異面直線PA與BC所成角的余弦值;
(3)若PB的中點為M,求證:平面AMC⊥平面PBC.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若正三棱柱的棱長均相等,則與側面所成角的正切值為     .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知三個平面,若,且相交但不垂直,直線分別為內(nèi)的直線,則下列命題中:①任意;②任意; ③存在; ④存在; ⑤任意; ⑥存在。真命題的序號是_________ 。

查看答案和解析>>

同步練習冊答案