【題目】已知函數(shù).
(1)若函數(shù)在區(qū)間上單調(diào),求的取值范圍;
(2)若函數(shù)在上無零點,求的最小值.
【答案】(1);(2).
【解析】
試題分析:(1)求出函數(shù)的導(dǎo)數(shù),通過討論的范圍,判斷導(dǎo)函數(shù)的符號,從而求出函數(shù)的單調(diào)區(qū)間即可;(2)問題轉(zhuǎn)化為對,恒成立,令,根據(jù)函數(shù)的單調(diào)性求出的范圍即可.
試題解析:(1),………………………………1分
當(dāng)時,有,即函數(shù)在區(qū)間上單調(diào)遞減;……………………2分
當(dāng)時,令,得,若函數(shù)在區(qū)間上單調(diào),則
或,解得或;………………………………4分
綜上,的取值范圍是………………………………5分
(2)因為當(dāng)時,,所以在區(qū)間上恒成立不可能,
……………………6分
故要使函數(shù)在上無零點,只要對任意的,恒成立,
即對,恒成立,
令,
則,………………………………8分
再令,
則,
故在上為減函數(shù),于是,………………10分
從而,,于是在上為增函數(shù),所以,
故要使恒成立,只要,
綜上,若函數(shù)在上無零點,則的最小值為.……………………12分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4x2﹣4ax+a2﹣2a+2在區(qū)間[0,2]上有最小值3,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了解2017屆高三學(xué)生的性別和喜愛游泳是否有關(guān),對100名高三學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計 | |
男生 | 10 | ||
女生 | 20 | ||
合計 |
已知在這100人中隨機(jī)抽取1人,抽到喜歡游泳的學(xué)生的概率為.
(Ⅰ)請將上述列聯(lián)表補(bǔ)充完整;
(Ⅱ)判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,以原點為圓心的兩個同心圓,其中,大圓的半徑為 ,小圓的半徑為,點為大圓上一動點,連接,與小圓交于點,過點作軸的垂線,垂足為,過點作直線的垂線,垂足為,點,記.
(1)求點的坐標(biāo)(用含有的式子表示),并寫出點的軌跡方程,指出點的軌跡是什么曲線;
(2)設(shè)點的軌跡為,點分別是曲線上的兩個動點,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市某水產(chǎn)養(yǎng)殖戶進(jìn)行小龍蝦銷售,已知每千克小龍蝦養(yǎng)殖成本為6元,在整個銷售旺季的80天里,銷售單價(元/千克)與時間第(天)之間的函數(shù)關(guān)系為:
,日銷售量(千克)與時間第(天)之間的函數(shù)關(guān)系如圖所示:
(1)求日銷售量與時間的函數(shù)關(guān)系式?
(2)哪一天的日銷售利潤最大?最大利潤是多少?
(3)在實際銷售的前40天中,該養(yǎng)殖戶決定每銷售1千克小龍蝦,就捐贈元給村里的特困戶,在這前40天中,每天扣除捐贈后的日銷售利潤隨時間的增大而增大,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
等腰梯形ABEF中,AB∥EF,AB=2,AD=AF=1,AF⊥BF,O為AB的中點,矩形ABCD 所在的平面和平面ABEF互相垂直.
(1)求證:AF⊥平面CBF;
(2)設(shè)FC的中點為M,求證:OM∥平面DAF;
(3)求三棱錐C-BEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線C:y2=2px(p>0)的準(zhǔn)線為l,焦點為F.⊙M的圓心在x軸的正半軸上,且與y軸相切.過原點O作傾斜角為的直線n交l于點A, 交⊙M于另一點B,且AO=OB=2.
(1)求⊙M和拋物線C的方程;
(2)若P為拋物線C上的動點,求的最小值;
(3)過l上的動點Q向⊙M作切線,切點為S,T,求證:直線ST恒過一個定點,并求該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù)f(x)=|2x+1|+|2x-a|.
(I)若f(x)的最小值為2,求a的值;
(II)若f(x)≤|2x-4|的解集包含[-2,-1],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M={(x,y)|y=f(x)},若對于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,則稱集合M是“垂直對點集”.給出下列四個集合:
①M={};②M={(x,y)|y=sinx+1};
③M={(x,y)|y=log2x};④M={(x,y)|y=ex﹣2}.
其中是“垂直對點集”的序號是( 。
A. ①② B. ②③ C. ①④ D. ②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com