【題目】

等腰梯形ABEF中,ABEF,AB=2,ADAF=1,AFBF,OAB的中點,矩形ABCD 所在的平面和平面ABEF互相垂直.

(1)求證:AF⊥平面CBF;

(2)設(shè)FC的中點為M,求證:OM∥平面DAF;

(3)求三棱錐CBEF的體積.

【答案】(1)見解析;(2)

【解析】試題分析:(1)要證線與面垂直,需先證明直線垂直于平面內(nèi)的兩條相交直線,因為矩形所在的平面和平面互相垂直,所以垂直于平面,從而垂直于,依題意,垂直于,從而命題得證;(2)取的中點為,由三角形中位線定理,平行且等于的一半,而也是如此,從而平行且等于,四邊形為平行四邊形,所以平行于,由線面平行的判定定理即可得證平行于平面;(3)先計算底面三角形的面積,在等腰梯形中,可得此三角形的高為,底1,再計算三棱錐的高,即為,最后由三棱錐體積計算公式計算即可.

試題解析:(1) ∵平面ABCD⊥平面ABEFCBAB,

平面ABCD∩平面ABEFAB,∴CB⊥平面ABEF

AF平面ABEF,∴AFCB

又∵AFBF,BF∩BCB,BF,BC平面CBF

AF⊥平面CBF

(2) 設(shè)DF的中點為N,則MNCD,MNCD,

AOCDAOCD,則MNAOMNAO,

∴四邊形MNAO是平行四邊形,∴OMAN

AN平面DAF,OM平面DAF,∴OM∥平面DAF

(3) 過點EEHABH,則∠EBH=60°,

所以EH,EFAB-2HB=1,故SBEF×1×,VCBEF×SBEF×BC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于區(qū)間和函數(shù),若同時滿足:①上是單調(diào)函數(shù);②函數(shù) 的值域還是,則稱區(qū)間為函數(shù)的“不變”區(qū)間.

1求函數(shù)的所有“不變”區(qū)間.

2函數(shù)是否存在“不變”區(qū)間?若存在,求出實數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓C的中心在原點,其一個焦點與拋物線y2=4x的焦點相同,又橢圓C上有一點M(2,1),直線l平行于OM且與橢圓C交于A,B兩點,連接MA,MB.

(1)求橢圓C的方程;

(2)當(dāng)MA,MB與x軸所構(gòu)成的三角形是以x軸上所在線段為底邊的等腰三角形時,求直線l在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),該學(xué)校對100名高一新生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:

喜歡游泳

不喜歡游泳

合計

男生

10

女生

20

合計

已知在這100人中隨機抽取1人抽到喜歡游泳的學(xué)生的概率為

(1)請將上述列聯(lián)表補充完整;

(2)并判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由;

(3)已知在被調(diào)查的學(xué)生中有5名來自甲班,其中3名喜歡游泳,現(xiàn)從這5名學(xué)生中隨機抽取2人,求恰好有1人喜歡游泳的概率.

下面的臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】知函數(shù).

(1)若函數(shù)區(qū)間單調(diào),求取值范圍;

(2)若函數(shù)無零點,求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】推行“課堂”教學(xué)法,某化學(xué)老師分別傳統(tǒng)教學(xué)和“課堂”種不同的教學(xué)方式,在甲、乙兩個平行班級進(jìn)行教學(xué)實驗,為了比較教學(xué)效果,中考試后,分別從兩個班級中各隨機抽取20名學(xué)生的成績進(jìn)行統(tǒng)計,出的莖葉圖如下圖記成績不低于70分者為“成績優(yōu)良”.

(1)分別計算甲、乙20個樣本中,化學(xué)分?jǐn)?shù)前十的平均分,并大致判斷哪種教學(xué)方式的教學(xué)效果更佳;

(2)上統(tǒng)計數(shù)據(jù)填寫下面聯(lián)表,并判斷能否在犯錯誤的概率不超過前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”?

總計

成績優(yōu)良

成績不優(yōu)良

總計

獨立性檢驗界值表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知極點直角坐標(biāo)系的原點重合,極軸與的正半軸重合,圓極坐標(biāo)方程是直線參數(shù)方程是參數(shù)).

(1),直線的交點,一動點,求最大值;

(2)若直線得的弦長,值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,ABDC,AEDCBEAD.M、N分別是AD、BE上的點,且AM=BN,將三角形ADE沿AE折起,則下列說法正確的是 (填上所有正確說法的序號).

不論D折至何位置(不在平面ABC內(nèi))都有MN平面DEC;

不論D折至何位置都有MNAE

不論D折至何位置(不在平面ABC內(nèi))都有MNAB;

在折起過程中,一定存在某個位置,使ECAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市一汽車出租公司為了調(diào)查A,B兩種車型的出租情況,現(xiàn)隨機抽取了這兩種車型各100輛,分別統(tǒng)計了每輛車某個星期內(nèi)的出租天數(shù),統(tǒng)計數(shù)據(jù)如下表:

A車型 B車型

出租天數(shù)

1

2

3

4

5

6

7

出租天數(shù)

1

2

3

4

5

6

7

車輛數(shù)

5

10

30

35

15

3

2

車輛數(shù)

14

20

20

16

15

10

5

(Ⅰ)從出租天數(shù)為3天的汽車(僅限A,B兩種車型)中隨機抽取一輛,估計這輛汽車恰好是A型車的概率;

(Ⅱ)根據(jù)這個星期的統(tǒng)計數(shù)據(jù),估計該公司一輛A型車,一輛B型車一周內(nèi)合計出租天數(shù)恰好為4天的概率;

(Ⅲ)

(。┰噷懗AB兩種車型的出租天數(shù)的分布列及數(shù)學(xué)期望;

(ⅱ)如果兩種車輛每輛車每天出租獲得的利潤相同,該公司需要從A,B兩種車型中購買一輛(注:兩種車型的采購價格相當(dāng)),請你根據(jù)所學(xué)的統(tǒng)計知識,建議應(yīng)該購買哪一種車型,并說明你的理由.

查看答案和解析>>

同步練習(xí)冊答案