18.命題“p或q”是真命題,則下列結(jié)論中正確的個數(shù)為( 。
①“p且q”是真命題            
②“p且q”是假命題
③“非p或非q”是真命題        
④“非p或非q”是假命題.
A.0個B.1個C.2個D.3個

分析 運用復(fù)合命題的真值表,可得p,q中至少有一個為真命題,分p為真命題,q為假命題;p為真命題,q為真命題;p為假命題,q為真命題,判斷即可得到結(jié)論.

解答 解:命題“p或q”是真命題,可得p,q中至少有一個為真命題,
“p且q”中,p,q都為真命題,才為真命題,有一個假命題,即為假命題,故①、②均錯;
若p為真命題,q為假命題,則非p為假命題,非q為真命題,非p或非q為真命題;
若p為真命題,q為真命題,則非p為假命題,非q為假命題,非p或非q為假命題;
若p為假命題,q為真命題,則非p為真命題,非q為假命題,非p或非q為真命題.
故③、④均錯.
故選:A.

點評 本題考查復(fù)合命題的真假判斷,注意運用真值表,以及分類討論思想方法,考查判斷和推理能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.復(fù)數(shù)z滿足z(1-2i)=3+4i復(fù)數(shù)z的共軛復(fù)數(shù)所對應(yīng)的點在第( 。┫笙蓿
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列說法中正確的是(  )
A.經(jīng)過兩條平行直線,有且只有一個平面
B.如果兩條直線平行于同一個平面,那么這兩條直線平行
C.三點確定唯一一個平面
D.如果一個平面內(nèi)不共線的三個點到另一平面的距離相等,則這兩個平面相互平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.與點A(-3,2),B(1,1)的距離均為2的直線共有4條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.${({x+\frac{3}{x}})^4}$展開式中含x2項的系數(shù)為54.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.將曲線C按伸縮變換公式$\left\{\begin{array}{l}{x′=2x}\\{y′=3y}\end{array}\right.$變換得曲線方程為x2+y2=1,則曲線C的方程為4x2+9y2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知$\overrightarrow{a}$,$\overrightarrow$為單位向量,且|$\overrightarrow{a}+\overrightarrow$|=$\sqrt{2}$|$\overrightarrow{a}-\overrightarrow$|,則$\overrightarrow{a}$在$\overrightarrow{a}+\overrightarrow$上的投影為(  )
A.$\frac{1}{3}$B.-$\frac{2\sqrt{6}}{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)F1為橢圓C1:$\frac{(x-1)^{2}}{16}+\frac{{y}^{2}}{12}$=1的左焦點,M是C1上任意一點,P是線段F1M的中點;
(])求動點P的軌跡C的方程;
(2)若直線y=kx+2交軌跡C于A,B兩點,AB的中垂線交y軸于點Q(0,t),求t的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓$M:\frac{x^2}{2}+{y^2}=1$左、右焦點分別為F1、F2,點p為直線l:x+y=2上且不在x軸上的任意一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D,O為坐標(biāo)原點;
(1)求△ABF2的周長;
(2)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:$\frac{1}{k_1}-\frac{3}{k_2}=2$;
(3)問直線l是否存在點P,使得直線OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD滿足kOA+kOB+kOC+kOD=0?若存在,求出所有滿足條件的點P的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案