19.f(x)=ax2-x+1有一正零點(diǎn)與一負(fù)零點(diǎn),則a的取值范圍是(-∞,0).

分析 利用二次函數(shù)的性質(zhì),列出不等式求解即可.

解答 解:f(x)=ax2-x+1有一正零點(diǎn)與一負(fù)零點(diǎn),由f(0)=1>0,
可得a<0.
a的取值范圍是:(-∞,0).
故答案為:(-∞,0).

點(diǎn)評 本題考查二次函數(shù)的性質(zhì)的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,其左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P(x0,y0)是坐標(biāo)平面內(nèi)一點(diǎn),且x02+y02=$\frac{7}{4}$.
(1)求橢圓C的方程;
(2)過點(diǎn)S(0,-$\frac{1}{3}$)且斜率為k的動直線l交橢圓于A、B兩點(diǎn),問:在y軸上是否存在定點(diǎn)M,使以AB為直徑的圓恒過這個點(diǎn)?若存在,求出M的坐標(biāo)和△MAB面積的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{bn}為等差數(shù)列,數(shù)列{an}為遞增等比數(shù)列,${a}_{5}^{2}$=a10,且2(an+an+2)=5an+1,n∈N*,且b1=a3,b3=a4
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)令cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.4B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知x,y滿足x+y=3,求證:(x+5)2+(y-2)2≥18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.三角形ABC中,sinBcosC=cosBcos(A+B),三角形ABC的形狀為鈍角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.墻上掛著1張高為2m的油畫,它的下沿線距地平面2m,觀畫者的眼睛距地平面1.7m,若使觀畫者對此畫所張的視角達(dá)到最大,則他應(yīng)距墻( 。﹎.
A.$\sqrt{0.52}$B.$\sqrt{0.34}$C.$\sqrt{0.69}$D.$\sqrt{0.41}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}滿足an+1=3an,且a1=6
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{1}{2}$(n+1)an,求b1+b2+…+bn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖所示,已知點(diǎn)A(-1,0)是拋物線的準(zhǔn)線與x軸的焦點(diǎn),過點(diǎn)A的直線與拋物線交于M,N兩點(diǎn),過點(diǎn)M的直線交拋物線于另一個點(diǎn)Q,且直線MQ過點(diǎn)B(1,-1).
(1)求拋物線的方程;
(2)求證:直線QN過定點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案