【題目】如圖,四邊形PDCE為矩形,四邊形ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC90°,,若MPA的中點(diǎn),PCDE交于點(diǎn)N.

1)求證:AC∥面MDE;

2)求證:PEMD;

3)求點(diǎn)N到平面ABM的距離.

【答案】1)證明見解析;(2)證明見解析;(3

【解析】

1)根據(jù)三角形中位線性質(zhì)得線線平行,再根據(jù)線面平行判定定理得結(jié)果;

2)先根據(jù)面面垂直性質(zhì)定理得AD⊥平面PDCE,再根據(jù)線面垂直判斷與性質(zhì)定理證結(jié)果;

3)利用等體積法,即由VPABCVCPAB求點(diǎn)面距.

1)證明:連接MN,∵四邊形PDCE為矩形,PCDE交于點(diǎn)N,∴NPC的中點(diǎn),

MPA的中點(diǎn),∴MNAC,

MN平面MDE,AC平面MDE

AC∥面MDE;

2)證明:∵平面PDCE⊥平面ABCD,平面PDCE平面ABCDCD,∠ADC90°,

AD⊥平面PDCE,則ADPE,又PEPD,PDADD,

PE⊥平面PAD,

PEMD

3)解:∵,

PA,則,,

設(shè)C到平面PAB的距離為h,則由VPABCVCPAB,

,解得h,

NPC的中點(diǎn),∴點(diǎn)N到平面ABM的距離為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為原點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求曲線的普通方程和直線的直角坐標(biāo)方程;

(2)設(shè)直線軸的交點(diǎn)為,過(guò)點(diǎn)作傾斜角為的直線與曲線交于兩點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在長(zhǎng)方體ABCDA1B1C1D1,若AB=BC,E,F分別是AB1,BC1的中點(diǎn),則下列結(jié)論中不成立的是(

A.EFBB1垂直B.EF⊥平面BDD1B1

C.EFC1D所成的角為45°D.EF∥平面A1B1C1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是圓上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作兩條直線,它們與橢圓都只有一個(gè)公共點(diǎn),且分別交圓于點(diǎn).

(Ⅰ)若,求直線的方程;

(Ⅱ)①求證:對(duì)于圓上的任意點(diǎn),都有成立;

②求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】AB是圓O的直徑,點(diǎn)C是圓O上異于AB的動(dòng)點(diǎn),過(guò)動(dòng)點(diǎn)C的直線VC垂直于圓O所在平面,D,E分別是VA,VC的中點(diǎn).

1)判斷直線DE與平面VBC的位置關(guān)系,并說(shuō)明理由;

2)當(dāng)△VAB為邊長(zhǎng)為的正三角形時(shí),求四面體VDEB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新聞出版業(yè)不斷推進(jìn)供給側(cè)結(jié)構(gòu)性改革,深入推動(dòng)優(yōu)化升級(jí)和融合發(fā)展,持續(xù)提高優(yōu)質(zhì)出口產(chǎn)品供給,實(shí)現(xiàn)了行業(yè)的良性發(fā)展.下面是2012年至2016年我國(guó)新聞出版業(yè)和數(shù)字出版業(yè)營(yíng)收增長(zhǎng)情況,則下列說(shuō)法錯(cuò)誤的是( )

A. 2012年至2016年我國(guó)新聞出版業(yè)和數(shù)字出版業(yè)營(yíng)收均逐年增加

B. 2016年我國(guó)數(shù)字出版業(yè)營(yíng)收超過(guò)2012年我國(guó)數(shù)字出版業(yè)營(yíng)收的2倍

C. 2016年我國(guó)新聞出版業(yè)營(yíng)收超過(guò)2012年我國(guó)新聞出版業(yè)營(yíng)收的1.5倍

D. 2016年我國(guó)數(shù)字出版營(yíng)收占新聞出版營(yíng)收的比例未超過(guò)三分之一

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某書店剛剛上市了《中國(guó)古代數(shù)學(xué)史》,銷售前該書店擬定了5種單價(jià)進(jìn)行試銷,每種單價(jià)(元)試銷l天,得到如表單價(jià)(元)與銷量(冊(cè))數(shù)據(jù):

單價(jià)(元)

18

19

20

21

22

銷量(冊(cè))

61

56

50

48

45

(l)根據(jù)表中數(shù)據(jù),請(qǐng)建立關(guān)于的回歸直線方程:

(2)預(yù)計(jì)今后的銷售中,銷量(冊(cè))與單價(jià)(元)服從(l)中的回歸方程,已知每?jī)?cè)書的成本是12元,書店為了獲得最大利潤(rùn),該冊(cè)書的單價(jià)應(yīng)定為多少元?

附:,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐中,底面為平行四邊形,側(cè)面 ,分別是的中點(diǎn),已知,,.

(Ⅰ)證明:平面;

(Ⅱ)證明:;

(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,(常數(shù)).

(I)當(dāng)的圖象相切時(shí),求的值;

(Ⅱ)設(shè),討論上零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案