已知函數(shù)f(x)=x3+bx2+cx+d(b≠0)在x=0處的切線方程為2x-y-1=0;
(1)求實數(shù)c,d的值;
(2)若對任意x∈[1,2],均存在t∈(0,1],使得et-lnt-4≤f(x)-2x,試求實數(shù)b的取值范圍.

解:(1)∵函數(shù)f(x)=x3+bx2+cx+d(b≠0),
∴f′(x)=3x2+2bx+c,
∵f(x)在x=0處的切線方程為2x-y-1=0,
∴f′(0)=c=2,切點坐標為(0,-1),
∴f(0)=d=-1.
故c=2,d=-1.
(2)∵f(x)=x3+bx2+cx+d(b≠0),
對任意x∈[1,2],均存在t∈(0,1],使得et-lnt-4≤f(x)-2x,
∴對任意x∈[1,2],均存在t∈(0,1],使得et-lnt-4≤x3+bx2-1,
∴對任意x∈[1,2],均存在t∈(0,1],使得et-lnt≤x3+bx2+3,
令h(t)=et-lnt,t∈(0,1],
h′(t)=e-=,t=,
∵0<t<時,h′(t)<0;時,h′(t)>0.
∴h(t)的減區(qū)間是(0,),增區(qū)間是(,1).
∴h(t)min=h()=e-ln=2.
∴原題轉化為?x∈[1,2],x3+bx+3≥2恒成立.
∵b≥=-x-
令g(x)=-x-,
g′(x)=-1+2x-3=0,得x=,
當1<x<時,g′(x)>0;當<x<2時,g′(x)<0;
∴g(x)的減區(qū)間是(,2),增區(qū)間是(1,).
∴g(x)max=g()=--=
∴b≥,且b≠0.
故實數(shù)b的取值范圍是[,0)∪(0,+∞).
分析:(1)由f′(x)=3x2+2bx+c,f(x)在x=0處的切線方程為2x-y-1=0,知f′(0)=c=2,切點坐標為(0,-1),由此能求出c和d.
(2)由f(x)=x3+bx2+cx+d(b≠0),把對任意x∈[1,2],均存在t∈(0,1],使得et-lnt-4≤f(x)-2x等價轉化為對任意x∈[1,2],均存在t∈(0,1],使得et-lnt≤x3+bx2+3.令h(t)=et-lnt,t∈(0,1],利用導數(shù)求出h(t)min=2.故原題轉化為?x∈[1,2],x3+bx+3≥2恒成立.由此能求出實數(shù)b的取值范圍.
點評:本題考查函數(shù)的解析式的求法,考查滿足條件的實數(shù)的取值范圍的求法.解題時要認真審題,注意等價轉化思想、分類討論思想、導數(shù)性質的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案