20.已知f(x)=sin(ωx+φ)(ω>0,|φ|<π)的圖象相鄰的對稱軸之間的距離為2π,將其向左平移$\frac{π}{2}$個單位,所得函數(shù)圖象與g(x)=cos(ωx+$\frac{π}{3}$)重合,則φ的值為( 。
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{7π}{12}$D.$\frac{2π}{3}$

分析 由條件利用正弦函數(shù)的周期性求得φ,根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律求得φ的值.

解答 解:∵f(x)=sin(ωx+φ)(ω>0,|φ|<π)的圖象相鄰的對稱軸之間的距離為2π,
∴$\frac{T}{2}$=$\frac{π}{ω}$=2π,∴ω=$\frac{1}{2}$,∴f(x)=sin($\frac{1}{2}$x+φ).
將f(x)的圖象向左平移$\frac{π}{2}$個單位,
所得函數(shù)圖象對應(yīng)的解析式為 y=sin[$\frac{1}{2}$(x+$\frac{π}{2}$)+φ]=sin($\frac{1}{2}$x+φ+$\frac{π}{4}$),
再根據(jù)所得圖象與g(x)=cos($\frac{1}{2}$x+$\frac{π}{3}$)=sin($\frac{1}{2}$x+$\frac{5π}{6}$)重合,
則φ+$\frac{π}{4}$=$\frac{5π}{6}$,∴φ=$\frac{7π}{12}$,
故選:C.

點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的周期性以及它的圖象的對稱性,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.設(shè)全集U=R,集合A={x|x>2},B={x|ax-1>0,a∈R}.
(1)當a=2時,求A∩B;
(2)若B⊆A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設(shè)i是虛數(shù)單位,則復數(shù)z=($\frac{1}{2}$-$\frac{\sqrt{3}}{2}$i)2的共軛復數(shù)$\overline{z}$=(  )
A.-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$iB.-$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$iC.$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$iD.$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在△ABC中,內(nèi)角A、B、C所對的邊分別是a,b,c,且4cosB-3=2cos2B.
(1)求sinB的值;
(2)若|$\overrightarrow{BA}$-$\frac{1}{2}$$\overrightarrow{BC}$|=3,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.計算[(-$\sqrt{2}$)2]-$\frac{1}{2}$的結(jié)果是(  )
A.$\sqrt{2}$B.-$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.將一顆骰子投擲兩次,第一次出現(xiàn)的點數(shù)記為a,第二次出現(xiàn)的點數(shù)記為b,設(shè)兩條直線l1:ax+by=2與l2:x+2y=2平行的概率為P1,相交的概率為P2,則點P(36P1,36P2)與圓C:x2+y2=1098的位置關(guān)系是( 。
A.點P在圓C上B.點P在圓C外C.點P在圓C內(nèi)D.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知公差不為0的等差數(shù)列{an}的首項a1=a(a>0),該數(shù)列的前n項和為Sn,且$\frac{1}{{a}_{1}}$,$\frac{1}{{a}_{2}}$,$\frac{1}{{a}_{4}}$成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式及Sn
(Ⅱ)設(shè)bn=$\frac{1}{{S}_{n}}$,cn=$\frac{1}{{a}_{{2}^{n-1}}}$,且Bn,Cn分別為數(shù)列{bn},{cn}的前n項和,當n≥2時,試比較Bn與Cn的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知曲線C的極坐標方程是ρ=2sinθ,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=-\frac{3}{5}t+2}\\{y=\frac{4}{5}t}\end{array}\right.$(t為參數(shù))
(Ⅰ)將曲線C的極坐標方程化為直角坐標方程;
(Ⅱ)設(shè)直線l與x軸的交點是M,N是曲線C上一動點,求MN的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.△ABC中,∠A=120°,∠A的平分線AD交邊BC于D,且AB=2,CD=2DB,則AD的長為$\frac{4}{3}$.

查看答案和解析>>

同步練習冊答案