【題目】已成橢圓 的左右頂點分別為 ,上下頂點分別為 ,左右焦點分別為 ,其中長軸長為4,且圓 為菱形 的內(nèi)切圓.
(1)求橢圓 的方程;
(2)點 為 軸正半軸上一點,過點 作橢圓 的切線 ,記右焦點 在 上的射影為 ,若 的面積不小于 ,求 的取值范圍.
【答案】
(1)
解:由題意知 ,所以 ,
所以 ,則
直線 的方程為 ,即 ,
所以 ,解得 ,
故橢圓 的方程為 ;
(2)
由題意,可設直線 的方程為 ,
聯(lián)立 消去 得 ,(*)
由直線 與橢圓 相切,得 ,
化簡得 ,
設點 ,由(1)知 ,則
,解得 ,
所以 的面積 ,
代入 消去 化簡得 ,
所以 ,解得 ,即 ,
從而 ,又 ,所以 ,
故 的取值范圍為 .
【解析】(1)圓O為菱形 的內(nèi)切圓,則原點到直線 的距離等于圓O的半徑;(2)設直線 的方程為 ,與橢圓聯(lián)立,直線l與橢圓相切,則判別式為0,列出關于m,n的方程。設點 ,表示出 的面積,根據(jù)題意 的面積不小于 ,求出n的取值范圍。
【考點精析】本題主要考查了橢圓的概念和橢圓的標準方程的相關知識點,需要掌握平面內(nèi)與兩個定點,的距離之和等于常數(shù)(大于)的點的軌跡稱為橢圓,這兩個定點稱為橢圓的焦點,兩焦點的距離稱為橢圓的焦距;橢圓標準方程焦點在x軸:,焦點在y軸:才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓 =1(a>b>0)的左焦點為F,離心率為 ,過點F且與x軸垂直的直線被橢圓截得的線段長為 .
(1)求橢圓的方程;
(2)設A,B分別為橢圓的左,右頂點,過點F且斜率為k的直線與橢圓交于C,D兩點.若 =8,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在區(qū)間上的最大值為4,最小值為1.
(1)求實數(shù)、的值;
(2)記,若在上是單調(diào)函數(shù),求實數(shù)的取值范圍;
(3)對于函數(shù),用,1,2,,,將區(qū)間任意劃分成個小區(qū)間,若存在常數(shù),使得和式對任意的劃分恒成立,則稱函數(shù)為上的有界變差函數(shù).記,試判斷函數(shù)是否為在上的有界變差函數(shù)?若是,求的最小值;若不是,請說明理由.
(參考公式:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( ) (1.)已知等比數(shù)列{an},則“數(shù)列{an}單調(diào)遞增”是“數(shù)列{an}的公比q>1”的充分不必要條件;
(2.)二項式 的展開式按一定次序排列,則無理項互不相鄰的概率是 ;
(3.)已知 ,則 ;
(4.)為了解1000名學生的學習情況,采用系統(tǒng)抽樣的方法,從中抽取容量為40的樣本,則分段的間隔為40.
A.(1)(2)
B.(2)(3)
C.(1)(3)
D.(2)(4)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】正三棱柱ABC﹣A1B1C1底邊長為2,E,F(xiàn)分別為BB1 , AB的中點. (I)已知M為線段B1A1上的點,且B1A1=4B1M,求證:EM∥面A1FC;
(II)若二面角E﹣A1C﹣F所成角的余弦值為 ,求AA1的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知不等式|x+3|﹣2x﹣1<0的解集為(x0 , +∞) (Ⅰ)求x0的值;
(Ⅱ)若函數(shù)f(x)=|x﹣m|+|x+ |﹣x0(m>0)有零點,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2lnx+x2﹣2ax(a>0). (I)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1 , x2(x1<x2),且f(x1)﹣f(x2)≥ ﹣2ln2恒成立,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com