14.如果曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程為xln3+y-$\sqrt{3}$=0,那么(  )
A.f′(x0)>0B.f′(x0)<0
C.f′(x0)=0D.f′(x)在x=x0處不存在

分析 欲判別f′(x0)的大小,只須求出切線斜率的正負(fù)即可,故結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率,從而問題解決.

解答 解:由切線xln3+y-$\sqrt{3}$=0的斜率:k=-ln3<0
可得f′(x0)<0.
故選B.

點(diǎn)評(píng) 本小題主要考查利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程、直線的斜率、導(dǎo)數(shù)的幾何意義等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知θ∈[0,$\frac{π}{2}}$],直線xsinθ+ycosθ-1=0和圓C:(x-1)2+(y-cosθ)2=$\frac{1}{4}$相交所得的弦長為$\frac{{\sqrt{3}}}{2}$,則θ=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求橢圓$\frac{x^2}{25}$+$\frac{y^2}{9}$=1的長軸和短軸長,離心率,焦點(diǎn)坐標(biāo)和頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.不等式x>$\frac{1}{x}$的解集為(  )
A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(1,+∞)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=5sin(ωx+ϕ)(ω>0,-π<ϕ<π)的部分圖象如圖所示,則ω,φ的值分別是( 。 
A.$\frac{2}{3}$,$\frac{π}{3}$B.$\frac{2}{3}$,$\frac{π}{6}$C.2,$\frac{π}{3}$D.2,$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.|$\frac{{{{(1+i)}^2}}}{1-2i}$|=( 。
A.$\frac{2}{5}$B.$\frac{6}{5}$C.$\frac{{\sqrt{5}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知三角形△ABC三邊滿足a2+b2=c2-$\sqrt{3}$ab,則此三角形的最大內(nèi)角為( 。
A.60°B.90°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知集合P={1,2},Q={2,3},則P∪Q={1,2,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)全集U=R,集合A={x|y=$\sqrt{{x}^{2}-2x-3}$},B={y|y=ex+1},則A∪B=(-∞,-1]∪(1,+∞}.

查看答案和解析>>

同步練習(xí)冊(cè)答案