如圖,在正方體ABCD-A1B1C1D1中,點(diǎn)P在側(cè)面BCC1B1及邊界上運(yùn)動(dòng)并保持AP⊥BD1,在圖中畫出點(diǎn)P的運(yùn)動(dòng)軌跡.

解:先找到一個(gè)平面總是保持與BD1垂直,
連接AC,AB1,B1C,在正方體ABCD-A1B1C1D1中,
有BD1⊥面ACB1
又點(diǎn)P在側(cè)面BCC1B1及其邊界上運(yùn)動(dòng),
根據(jù)平面的基本性質(zhì)得:
點(diǎn)P的軌跡為面ACB1與面BCC1B1的交線段CB1
故答案為線段CB1.如圖.
分析:如圖,先找到一個(gè)平面總是保持與BD1垂直,即BD1⊥面ACB1,又點(diǎn)P在側(cè)面BCC1B1及其邊界上運(yùn)動(dòng),并且總是保持AP與BD1垂直,得到點(diǎn)P的軌跡為面ACB1與面BCC1B1的交線段,結(jié)合平面的基本性質(zhì)知這兩個(gè)平面的交線是CB1
點(diǎn)評(píng):本題考查線面垂直的判定與正方體的幾何特征、軌跡的求法、平面的基本性質(zhì)等基礎(chǔ)知識(shí),考查空間想象力.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)若Rt△ABC中兩直角邊為a、b,斜邊c上的高為h,則
1
h2
=
1
a2
+
1
b2
,如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,記M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,記M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)若Rt△ABC中兩直角邊為a、b,斜邊c上的高為h,則
1
h2
=
1
a2
+
1
b2
,如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,類比平面幾何中的結(jié)論,得到此三棱錐中的一個(gè)正確結(jié)論為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E為DD1的中點(diǎn),
(1)求證:AC⊥平面D1DB;
(2)BD1∥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,點(diǎn)P是上底面A1B1C1D1內(nèi)一動(dòng)點(diǎn),則三棱錐P-ABC的主視圖與左視圖的面積的比值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案