14.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y≤0}\\{4x+y≥4}\\{x-2y+2≥0}\end{array}\right.$,則z=4x•($\frac{1}{2}$)y的最大值為( 。
A.1B.2${\;}^{\frac{4}{3}}$C.4D.2

分析 z=4x•($\frac{1}{2}$)y=22x-y,設(shè)m=2x-y,作出不等式組對應(yīng)的平面區(qū)域求出m的最大值即可.

解答 解:由z=4x•($\frac{1}{2}$)y=22x-y,設(shè)m=2x-y,得y=2x-m,作出不等式對應(yīng)的可行域(陰影部分),
平移直線y=2x-m,由平移可知當(dāng)直線y=2x-m,
經(jīng)過點(diǎn)A時(shí),直線y=2x-m的截距最小,此時(shí)m取得最大值,
由$\left\{\begin{array}{l}{x-y=0}\\{x-2y+2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,即A(2,2).
代入m=2x-y,得m=4-2=2,
即目標(biāo)函數(shù)m=2x-y的最大值為2.
則z的最大值為22=4,
故選:C.

點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義以及換元法,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知△ABC是半徑為2的圓的內(nèi)接三角形,內(nèi)角A,B,C的對邊分別為a、b、c,且2acosA=ccosB+bcosC.
(Ⅰ)求A;
(Ⅱ)若b2+c2=18,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知p:-2≤x≤10,q:x2-2x+1-a2≥0(a>0),若非p是q的充分不必要條件,則a的取值范圍是( 。
A.(0,3]B.[3,+∞)C.[9,+∞)D.[3,9]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在正項(xiàng)等比數(shù)列{an}中,若a1,a4029是方程x2-10x+16=0的兩根,則log2a2015的值是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)全集U=R,若集合A={x|3x>1},B={x|log3x>0},A∩∁UB=( 。
A.{x|x<0}B.{x|x>1}C.{x|0≤x<1}D.{x|0<x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,角A,B,C的對邊分別為a,b,c(b<c).滿足ccosB+bcosC=2acosA.
(1)求角A的大小;
(2)若△ABC的周長為20,面積為10$\sqrt{3}$,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知點(diǎn)$\overrightarrow{a}$=(2,m),$\overrightarrow$=(1,1),若$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$-$\overrightarrow$|,則實(shí)數(shù)m等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在三棱錐P-ABC中,PA⊥平面ABC,PA=2,AB=2,AC=1,∠BAC=60°,則該三棱錐的外接球的表面積為8π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.D為△ABC的BC邊上一點(diǎn),$\overline{DC}=-2\overline{DB}$,過D點(diǎn)的直線分別交直線AB、AC于E、F,若$\overline{AE}=λ\overline{AB},\overline{AF}=μ\overline{AC}$,其中λ>0,μ>0,則$\frac{2}{λ}+\frac{1}{μ}$=3.

查看答案和解析>>

同步練習(xí)冊答案