某種型號的汽車在勻速行駛中每小時耗油量關(guān)于行駛速度的函數(shù)解析式可以表示為:.已知甲、乙兩地相距,設(shè)汽車的行駛速度為,從甲地到乙地所需時間為,耗油量為

(1)求函數(shù);

(2)求當(dāng)為多少時,取得最小值,并求出這個最小值.

【解析】(1) ,根據(jù)可求出y=f(x).

(2)求導(dǎo),根據(jù)導(dǎo)數(shù)確定其最小值.

 

【答案】

(1)從甲地到乙地汽車的行駛時間為,  

. 

(2),由,得,列出下表:

極小值

所以,當(dāng)時,取得極小值也是最小值.       

答:當(dāng)汽車的行駛速度為時,耗油量最少為

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某種型號的汽車在勻速行駛中每小時耗油量p(L)關(guān)于行駛速度v(km/h)的函數(shù)解析式可以表示為:p=
1
128000
v3-
3
80
v+8
({0<v≤120}).已知甲、乙兩地相距100km,設(shè)汽車的行駛速度為x(km/h),從甲地到乙地所需時間為t(h),耗油量為y(L).
(1)求函數(shù)t=g(x)及y=f(x);
(2)求當(dāng)x為多少時,y取得最小值,并求出這個最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時的耗油量y(升)關(guān)于行駛速度x(千米/小時)的函數(shù)解析式可以表示為:y=
1
128000
x3-
3
80
x+8(0<x≤120).已知甲、乙兩地相距100千米.
(Ⅰ)當(dāng)汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?
(Ⅱ)當(dāng)汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時的耗油量y(升)關(guān)于行駛速度x(千米/小時)的函數(shù)解析式可以表示為:y=
1
128000
x3-
3
80
x+8(0<x≤120)
已知甲、乙兩地相距100千米.求當(dāng)汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)統(tǒng)計表明:某種型號的汽車在勻速行駛中每小時的耗油量y(升)關(guān)于行駛速度x(千米/小時)的函數(shù)解析式可以表示為y=
1
128000
x3-
3
80
x+8,x∈(0,120]
,且甲、乙兩地相距100千米,則當(dāng)汽車以
80
80
千米/小時的速度勻速行駛時,從甲地到乙地耗油量最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆山東省高二下學(xué)期模塊考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時耗油量y(升)關(guān)于行駛速度x(千米/小時)的函數(shù)解析式可以表示為:(≤120).已知甲、乙兩地相距100千米。

(Ⅰ)當(dāng)汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?

(Ⅱ)當(dāng)汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?

 

查看答案和解析>>

同步練習(xí)冊答案