【題目】已知函數(shù)fx)=exax1e為自然對數(shù)的底數(shù)),a0

1)若函數(shù)fx)恰有一個零點,證明:aaea1

2)若fx≥0對任意x∈R恒成立,求實數(shù)a的取值集合.

【答案】1)見解析;(2{1}.

【解析】

試題(1)先判斷fx)的單調(diào)性,根據(jù)“fx)前有一個零點,找到關于a的等式,化簡整理可得需證結論;(2)根據(jù)(1),只需fx)的最小值不小于0即可.

試題解析:(1)證明: 由,得

0,即0,解得xlna,同理由0解得xlna,

∴ fx)在(-,lna)上是減函數(shù),在(lna,+)上是增函數(shù),

于是fx)在xlna取得最小值.

函數(shù)fx)恰有一個零點,則,

化簡得:,

2)解:由(1)知,取得最小值,

由題意得≥0,即≥0

,則,

可得0a1,由可得a1

∴ ha)在(0,1)上單調(diào)遞增,在(1,+)上單調(diào)遞減,即,

0a1a1時,ha)<0

要使得fx≥0對任意x∈R恒成立,a1

∴ a的取值集合為{1}

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是平行四邊形,側面是邊長為2的正三角形, , .

(Ⅰ)求證:平面平面;

(Ⅱ)設是棱上的點,當平面時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若函數(shù)有三個不同的零點,則實數(shù)的取值范圍是

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市食品藥品監(jiān)督管理局開展2020年春季快遞餐飲安全檢查,對本市的8個快遞配餐點進行了原料采購加工標準和衛(wèi)生標準的檢查和評分,其評分情況如表所示:

快遞配餐點編號

1

2

3

4

5

6

7

8

原料采購加工標準評分

82

75

70

66

83

93

95

100

衛(wèi)生標準評分

81

79

77

75

82

83

84

87

1)已知之間具有線性相關關系,求關于的線性回歸方程;(精確到0.1

2)現(xiàn)從8個被檢查點中任意抽取兩個組成一組,若兩個點的原料采購加工標準和衛(wèi)生標準的評分均超過80分,則組成“快遞標兵配餐點”,求該組被評為“快遞標兵配餐點”的概率.

參考公式:;參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求在點處的切線方程;

2)若不等式恒成立,求k的取值范圍;

3)求證:當時,不等式成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,直線l,P為直線l上一點,且點P在極軸上方OP為一邊作正三角形逆時針方向,且面積為

Q點的極坐標;

外接圓的極坐標方程,并判斷直線l外接圓的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-5:不等式選講]

已知函數(shù)

(Ⅰ)求不等式的解集;

(Ⅱ)若,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有個小球,甲、乙兩位同學輪流且不放回抓球,每次最少抓1個球,最多抓3個球,規(guī)定誰抓到最后一個球誰贏. 如果甲先抓,那么下列推斷正確的是(

A. =4,則甲有必贏的策略 B. =6,則乙有必贏的策略

C. =9,則甲有必贏的策略 D. =11,則乙有必贏的策略

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)的產(chǎn)品中分正品與次品,正品重,次品重,現(xiàn)有5袋產(chǎn)品(每袋裝有10個產(chǎn)品),已知其中有且只有一袋次品(10個產(chǎn)品均為次品)如果將5袋產(chǎn)品以15編號,第袋取出個產(chǎn)品(),并將取出的產(chǎn)品一起用秤(可以稱出物體重量的工具)稱出其重量,若次品所在的袋子的編號是2,此時的重量_________;若次品所在的袋子的編號是,此時的重量_______.

查看答案和解析>>

同步練習冊答案