【題目】已知函數(shù)f(x)=ex-ax-1(e為自然對數(shù)的底數(shù)),a>0.
(1)若函數(shù)f(x)恰有一個零點,證明:aa=ea-1;
(2)若f(x)≥0對任意x∈R恒成立,求實數(shù)a的取值集合.
【答案】(1)見解析;(2){1}.
【解析】
試題(1)先判斷f(x)的單調(diào)性,根據(jù)“f(x)前有一個零點”,找到關于a的等式,化簡整理可得需證結論;(2)根據(jù)(1),只需f(x)的最小值不小于0即可.
試題解析:(1)證明: 由,得.
由>0,即>0,解得x>lna,同理由<0解得x<lna,
∴ f(x)在(-∞,lna)上是減函數(shù),在(lna,+∞)上是增函數(shù),
于是f(x)在x=lna取得最小值.
又∵ 函數(shù)f(x)恰有一個零點,則,
即.
化簡得:,
∴.
(2)解:由(1)知,在取得最小值,
由題意得≥0,即≥0,
令,則,
由可得0<a<1,由可得a>1.
∴ h(a)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,即,
∴ 當0<a<1或a>1時,h(a)<0,
∴ 要使得f(x)≥0對任意x∈R恒成立,a=1
∴ a的取值集合為{1}
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐的底面是平行四邊形,側面是邊長為2的正三角形, , .
(Ⅰ)求證:平面平面;
(Ⅱ)設是棱上的點,當平面時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市食品藥品監(jiān)督管理局開展2020年春季快遞餐飲安全檢查,對本市的8個快遞配餐點進行了原料采購加工標準和衛(wèi)生標準的檢查和評分,其評分情況如表所示:
快遞配餐點編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
原料采購加工標準評分 | 82 | 75 | 70 | 66 | 83 | 93 | 95 | 100 |
衛(wèi)生標準評分 | 81 | 79 | 77 | 75 | 82 | 83 | 84 | 87 |
(1)已知與之間具有線性相關關系,求關于的線性回歸方程;(精確到0.1)
(2)現(xiàn)從8個被檢查點中任意抽取兩個組成一組,若兩個點的原料采購加工標準和衛(wèi)生標準的評分均超過80分,則組成“快遞標兵配餐點”,求該組被評為“快遞標兵配餐點”的概率.
參考公式:,;參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,直線l:,P為直線l上一點,且點P在極軸上方以OP為一邊作正三角形逆時針方向,且面積為.
求Q點的極坐標;
求外接圓的極坐標方程,并判斷直線l與外接圓的位置關系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有個小球,甲、乙兩位同學輪流且不放回抓球,每次最少抓1個球,最多抓3個球,規(guī)定誰抓到最后一個球誰贏. 如果甲先抓,那么下列推斷正確的是( )
A. 若=4,則甲有必贏的策略 B. 若=6,則乙有必贏的策略
C. 若=9,則甲有必贏的策略 D. 若=11,則乙有必贏的策略
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)的產(chǎn)品中分正品與次品,正品重,次品重,現(xiàn)有5袋產(chǎn)品(每袋裝有10個產(chǎn)品),已知其中有且只有一袋次品(10個產(chǎn)品均為次品)如果將5袋產(chǎn)品以1~5編號,第袋取出個產(chǎn)品(),并將取出的產(chǎn)品一起用秤(可以稱出物體重量的工具)稱出其重量,若次品所在的袋子的編號是2,此時的重量_________;若次品所在的袋子的編號是,此時的重量_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com