4.已知函數(shù)y=2sin(ωx+$\frac{π}{6}$)(ω>0)的最小正周期為$\frac{2π}{3}$,則ω=3.

分析 由已知利用正弦函數(shù)的周期公式即可計算得解.

解答 解:由題意可得:最小正周期T=$\frac{2π}{3}$=$\frac{2π}{ω}$,
解得:ω=3.
故答案為:3.

點評 本題考查三角函數(shù)的周期公式的應用,考查計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

14.已知f(x)是定義在R上的偶函數(shù),在(0,+∞)是增函數(shù),且f(1)=0,則f(x+1)<0的解集為(-2,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知拋物線C:y2=-2x的焦點為F,點A(x0,y0)是C上一點,若|AF|=$\frac{3}{2}$,則x0=(  )
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.如圖,在直三棱柱ABC-A1B1C1中,平面A1BC⊥側面A1B1BA,且AA1=AB=BC=2,則AC與平面A1BC所成角為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知數(shù)列{an}滿足a1=2,an+1=$\frac{n{a}_{n}-1}{n+1}$(n∈N+).
(1)計算a2,a3,a4,并猜測出{an}的通項公式;
(2)用數(shù)學歸納法證明(1)中你的猜測.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.將函數(shù)f(x)=sin(2x+φ)(0<φ<π)的圖象向左平移$\frac{π}{6}$個單位后得到函數(shù)y=g(x)的圖象,若y=g(x)是偶函數(shù),則φ=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知集合A={x|f(x)=lg(x-1)+$\sqrt{2-x}$},集合B={y|y=2x+a,x≤0}.
(1)若a=$\frac{3}{2}$,求A∪B;
(2)若A∩B=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.為監(jiān)測全市小學生身體形態(tài)生理機能的指標情況,體檢中心從某小學隨機抽取100名學生,將他們的身高(單位:厘米)數(shù)據(jù)分成如下5個組:[100,110),[110,120),…,[140,150),并繪制成頻率分布直方圖(如圖所示).
(Ⅰ)若該校共有學生1000名,試估計身高在[100,130)之間的人數(shù);
(Ⅱ)在抽取的100名學生中,按分層抽樣的方法從身高為:[100,110),[130,140),[140,150)3個組的學生中選取7人參加一項身體機能測試活動,并從這7人中任意抽取2人進行定期跟蹤測試,求這2人取自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=2cos($\frac{π}{2}$-x)cos(x+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$.
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

同步練習冊答案