9.將函數(shù)f(x)=sin(2x+φ)(0<φ<π)的圖象向左平移$\frac{π}{6}$個(gè)單位后得到函數(shù)y=g(x)的圖象,若y=g(x)是偶函數(shù),則φ=$\frac{π}{6}$.

分析 首先,結(jié)合平移得到g(x)=2sin(2x+$\frac{π}{3}$+φ),然后根據(jù)g(x)為偶函數(shù)即可求解.

解答 解:圖象向左平移$\frac{π}{6}$得到f(x+$\frac{π}{6}$)=2sin(2x+$\frac{π}{3}$+φ),
∴g(x)=2sin(2x+$\frac{π}{3}$+φ),
∵g(x)為偶函數(shù),
因此$\frac{π}{3}$+φ=kπ+$\frac{π}{2}$,
又0<φ<π,
故φ=$\frac{π}{6}$.
故答案為:$\frac{π}{6}$.

點(diǎn)評 本題重點(diǎn)考查了三角函數(shù)圖象與性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若f(x)=ax3+4x+5的圖象在(1,f(1))處的切線在x軸上的截距為-$\frac{3}{7}$.則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知雙曲線$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{3}$=1的左右焦點(diǎn)分別為F1,F(xiàn)2,過F1的直線與左支相交于A,B兩點(diǎn),如果|AF2|+|BF2|=2|AB|,則|AB|=$4\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)命題p:m∈{x|x2+(a-8)x-8a≤0},命題q:方程$\frac{{x}^{2}}{m-3}$+$\frac{{y}^{2}}{5-m}$=1表示焦點(diǎn)在x軸上的雙曲線.
(1)若當(dāng)a=1時(shí),命題p∧q假命題,p∨q”為真命題,求實(shí)數(shù)m的取值范圍;
(2)若命題p是命題q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)y=2sin(ωx+$\frac{π}{6}$)(ω>0)的最小正周期為$\frac{2π}{3}$,則ω=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=cosx(x∈[0,2π])與函數(shù)g(x)=tanx的圖象交于M,N兩點(diǎn),則|$\overrightarrow{OM}$+$\overrightarrow{ON}$|=π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)已知函數(shù)f(x)=2x+$\frac{1}{x}$(x>0),證明函數(shù)f(x)在(0,$\frac{\sqrt{2}}{2}$)上單調(diào)遞減,并寫出函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)記函數(shù)g(x)=a|x|+2ax(a>1)
①若a=4,解關(guān)于x的方程g(x)=3;
②若x∈[-1,+∞),求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下表提供了某廠節(jié)能降耗技術(shù)改造后在生產(chǎn)A產(chǎn)品過程中記錄的產(chǎn)量x與相應(yīng)的生產(chǎn)能耗y的幾組對應(yīng)數(shù)據(jù):
x4235
y49m3954
根據(jù)上表可得回歸方程$\widehaty=9.4x+9.1$,那么表中m的值為(  )
A.27.9B.25.5C.26.9D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某校從學(xué)生會宣傳部6名成員(其中男生4人,女生2人)中,任選3人參加某省舉辦的“我看中國改革開放三十年”演講比賽活動.
(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列;
(2)求男生甲或女生乙被選中的概率.

查看答案和解析>>

同步練習(xí)冊答案