精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓的中心在原點,焦點在軸上,為橢圓短軸的一個端點,為橢圓的右焦點,線段的延長線與橢圓相交于點,且.

(1)求橢圓的標準方程;

(2)設直線與橢圓相交于,兩點,為坐標原點,若直線的斜率之積為,求的取值范圍.

【答案】(1);(2).

【解析】

(1)由題意得b=2,由,得到,代入橢圓方程,結合a2b2+c2,聯立解出即可.

(2)解法一:先考慮斜率存在時,設直線的方程為,與橢圓方程聯立,將條件坐標化,把根與系數的關系代入可得:,代入中,化簡得,又,可得所求范圍,再考慮斜率不存在時,求得點A,B坐標,計算數量積,與k存在時的范圍取并集即可.

解法二:設直線OA斜率為k,將直線OA的方程與橢圓聯立,求得A的坐標,利用寫出B的坐標,代入化簡后,利用基本不等式求得最值.

(1)設橢圓的方程為,右焦點,

因為為橢圓短軸的一個端點,則.因為,則點.

因為點在橢圓上,則,即.

,則,得,所以橢圓的標準方程是.

(2)解法一:當直線的斜率存在時,設直線的方程為,

代入橢圓方程,得,即.

設點,,則,.

因為,則,即,即,

,所以

,化簡得.

所以 .

因為 ,,則,

所以.

,則,即,則,所以.

當直線的斜率不存在時,點關于軸對稱,則.

因為,不妨設,則.聯立,得點,,或點,,此時.

綜上分析,的取值范圍是.

解法二:因為,設,則.

設點,,則,即,

所以.

,得,即,所以.

同理,.

所以 .

因為,當且僅當,即時取等號,則.

,且,所以的取值范圍是.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數

(1)討論的單調性;

(2)時,,求的最大整數值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列中,,,.

1)證明:數列是等比數列,并求數列的通項公式;

2)在數列中,是否存在連續(xù)三項成等差數列?若存在,求出所有符合條件的項;若不存在,請說明理由;

3)若,,求證:使得,成等差數列的點列在某一直線上.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直三棱柱ABC-A1B1C1中,底面△ABC是直角三角形,AC=BC=AA1=2D為側棱AA1的中點.

1)求異面直線DC1,B1C所成角的余弦值;

2)求二面角B1-DC-C1的平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市準備引進優(yōu)秀企業(yè)進行城市建設. 城市的甲地、乙地分別對5個企業(yè)(共10個企業(yè))進行綜合評估,得分情況如莖葉圖所示.

(Ⅰ)根據莖葉圖,求乙地對企業(yè)評估得分的平均值和方差;

(Ⅱ)規(guī)定得分在85分以上為優(yōu)秀企業(yè). 若從甲、乙兩地準備引進的優(yōu)秀企業(yè)中各隨機選取1個,求這兩個企業(yè)得分的差的絕對值不超過5分的概率.

注:方差

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在上的函數,單調遞增,,若對任意,存在,使得成立,則稱上的“追逐函數”.若,則下列四個命題:①上的“追逐函數”;②若上的“追逐函數”,則;③上的“追逐函數”;④當時,存在,使得上的“追逐函數”.其中正確命題的個數為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(I)若處取得極值,求過點且與處的切線平行的直線方程;

(II)當函數有兩個極值點,且時,總有成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠共有男女員工500人,現從中抽取100位員工對他們每月完成合格產品的件數統(tǒng)計如下:

每月完成合格產品的件數(單位:百件)

頻數

10

45

35

6

4

男員工人數

7

23

18

1

1

(1)其中每月完成合格產品的件數不少于3200件的員工被評為“生產能手”.由以上統(tǒng)計數據填寫下面列聯表,并判斷是否有95%的把握認為“生產能手”與性別有關?

非“生產能手”

“生產能手”

合計

男員工

女員工

合計

(2)為提高員工勞動的積極性,工廠實行累進計件工資制:規(guī)定每月完成合格產品的件數在定額2600件以內的,計件單價為1元;超出件的部分,累進計件單價為1.2元;超出件的部分,累進計件單價為1.3元;超出400件以上的部分,累進計件單價為1.4元.將這4段中各段的頻率視為相應的概率,在該廠男員工中選取1人,女員工中隨機選取2人進行工資調查,設實得計件工資(實得計件工資=定額計件工資+超定額計件工資)不少于3100元的人數為,求的分布列和數學期望.

附:,

.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從一批蘋果中,隨機抽取50個,其重量(單位:克)的頻數分布表如下:

分組(重量)

頻數(個)

5

10

20

15

(1) 根據頻數分布表計算蘋果的重量在的頻率;

(2) 用分層抽樣的方法從重量在的蘋果中共抽取4個,其中重量在的有幾個?

(3) 在(2)中抽出的4個蘋果中,任取2個,求重量在中各有1個的概率.

查看答案和解析>>

同步練習冊答案