8.直線x=2被圓(x-a)2+y2=25所截得的弦長等于8,則a的值為(  )
A.-1或-3B.5或-3C.1或-3D.-1或5

分析 由圓的半徑為5,直線x=2被圓x2+y2=25所截得的弦長為8,可以求出圓心到直線的距離為3,再利用點(diǎn)到直線的距離公式求出參數(shù).

解答 解:由于圓的半徑為5,直線x=2被圓(x-a)2+y2=25所截得的弦長等于8,
∴圓心到直線的距離為3
∴|a-2|=3
∴a=-1或5
故選:D.

點(diǎn)評 本題的考點(diǎn)是直線與圓的位置關(guān)系,主要考查直線與圓相交中的弦長問題,關(guān)鍵是利用點(diǎn)到直線的距離公式利用常用的直角三角形解題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列命題中:
①命題“若x2-5x+6=0,則x=2或x=3”的逆否命題為“若x≠2或x≠3,則x2-5x+6≠0”.
②命題p:“存在x0∈R,使得log2x0≤0”的否定是“任意x∈R,使得log2x>0”;
③回歸直線方程一定過樣本中心點(diǎn)($\overline{x}$,$\overline{y}$).
其中真命題的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.過點(diǎn)$M({1,2\sqrt{2}})$作直線交拋物線x2=2py(p>0)于A、B且M為A、B中點(diǎn),過A、B分別作拋物線切線,兩切線交于點(diǎn)N,若N在直線y=-2p上,則p=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.?dāng)?shù)列{an}是等比數(shù)列且an>0,a1=$\frac{1}{2}$,前n項和為Sn,S3+a3,S5+a5,S4+a4成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{nan}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=(a-$\frac{1}{2}$)x2+lnx.(a∈R)
(1)當(dāng)a=0時,求f(x)在x=1處的切線方程;
(2)若在區(qū)間(1,+∞)上,函數(shù)f(x)的圖象恒在直線y=2ax下方,求a的取值范圍;
(3)設(shè)g(x)=f(x)-2ax,h(x)=x2-2bx+$\frac{19}{6}$.當(dāng)a=$\frac{2}{3}$時,若對于任意x1∈(0,2),存在x2∈[1,2],使g(x1)≤h(x2),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.證明函數(shù)f(x)=$\frac{2x+1}{x-1}$在(1,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)$f(x)=sinx+sin(x+\frac{π}{2}),x∈R$
(1)求f(x)的最小正周期;
(2)求f(x)的最大值及相應(yīng)x的取值集合;
(3)若f(α)=$\frac{3}{4}$,求sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.給出下列四個命題:
①函數(shù)f(x)=lnx-2+x在區(qū)間(1,e)上存在零點(diǎn);
②要得到函數(shù)y=sinx的圖象,只需將函數(shù)$y=cos(x-\frac{π}{3})$的圖象向左平移$\frac{π}{6}$個單位;
③若m≥-1,則函數(shù)$y={log_{\frac{1}{2}}}({x^2}-2x-m)$的值城為R;
④“a=1”是“函數(shù)f(x)=$\frac{{a-{e^x}}}{{1+a{e^x}}}$在定義域上是奇函數(shù)”的充分不必要條件;
⑤已知{an}為等差數(shù)列,若$\frac{{{a_{11}}}}{{{a_{10}}}}$<-1,且它的前n項和Sn有最大值,那么當(dāng)Sn取得最小正值時,n=20.
其中正確命題的序號是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知正方體ABCD-A1B1C1D1的棱長為2,E,F(xiàn)分別是AA1,CC1的中點(diǎn),試判斷四邊形BED1F的形狀,并計算其面積.

查看答案和解析>>

同步練習(xí)冊答案