如圖1,在Rt中, D、E分別是上的點(diǎn),且,將沿折起到的位置,使,如圖2.

(1)求證:平面平面
(2)若,求與平面所成角的余弦值;
(3)當(dāng)點(diǎn)在何處時(shí),的長度最小,并求出最小值.

(1)詳見解析;(2)直線BE與平面所成角的余弦值為;(3)當(dāng)時(shí),最大為 

解析試題分析:(1)折起之后, 又平面 
平面,由面面垂直的判定定理可得,平面平面 
(2)由(1)知,故以D為原點(diǎn),分別為軸建立空間直角坐標(biāo)系 利用空間向量中直線與平面的夾角公式即可得直線BE與平面所成角的余弦值 (3)利用(2)中的空間坐標(biāo)可得:,利用二次函數(shù)的性質(zhì)即可得其最大值
試題解析:(1)證明:在△中,
 又平面 
平面,又平面,故平面平面 (4分)
(2)由(1)知,故以D為原點(diǎn),分別為軸建立空間直角坐標(biāo)系 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b2/8/3wyt1.png" style="vertical-align:middle;" />,則    5分
,設(shè)平面的一個(gè)法向量為,
,取法向量,則直線BE與平面所成角的正弦值:
         8分
故直線BE與平面所成角的余弦值為                 (9分)
(3)設(shè),則,則
,
當(dāng)時(shí),最大為                   (12分)
考點(diǎn):1、空間直線與平面的位置關(guān)系;2、空間直線與平面所成的角;3、空間向量的運(yùn)用

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知四棱錐P-ABCD的底面ABCD是菱形,且PC⊥平面ABCD,PC=AC=2,E是PA的中點(diǎn)。
(1)求證:AC⊥平面BDE;
(2)若直線PA與平面PBC所成角為30°,求二面角P-AD-C的正切值;
(3)求證:直線PA與平面PBD所成的角φ為定值,并求sinφ值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在長方體ABCDA1B1C1D1中,,點(diǎn)E是棱AB上一點(diǎn).且

(1)證明:;
(2)若二面角D1ECD的大小為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,設(shè)是一個(gè)高為的四棱錐,底面是邊長為的正方形,頂點(diǎn)在底面上的射影是正方形的中心.是棱的中點(diǎn).試求直線與平面所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,正三棱柱所有棱長都是2,D棱AC的中點(diǎn),E是棱的中點(diǎn),AE交于點(diǎn)H.

(1)求證:平面;
(2)求二面角的余弦值;
(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,將邊長為2的正方形ABCD沿對角線BD折成一個(gè)直二面角,且EA⊥平面ABD,AE=.

(1)若,求證:AB∥平面CDE;
(2)求實(shí)數(shù)的值,使得二面角AECD的大小為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),DE⊥平面BCC1

(1)證明:AB=AC
(2)設(shè)二面角A-BD-C為60°,求B1C與平面BCD所成的角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在四棱錐P-ABCD中,PC⊥平面ABCD,PC=2,在四邊形ABCD中,∠B=∠C=90°,AB=4,CD=1,點(diǎn)M在PB上,PB=4PM,PB與平面ABCD成30°的角.

求證:(1)CM∥平面PAD.
(2)平面PAB⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直三棱柱ABC­A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,A1AMCC1的中點(diǎn).

(1)求證:A1BAM;
(2)求二面角B­AM­C的平面角的大小..

查看答案和解析>>

同步練習(xí)冊答案