【題目】如圖,在四棱錐中,平面,,為的中點.
(1)求證:平面;
(2)求二面角的余弦值.
【答案】(1)見解析;(2)
【解析】
(1) 取的中點,連接,根據中位線的方法證明四邊形是平行四邊形.再證明與從而證明平面,從而得到平面即可.
(2) 以所在的直線為軸建立空間直角坐標系,再求得平面的法向量與平面的法向量進而求得二面角的余弦值即可.
(1)證明:如圖,取的中點,連接.
又為的中點,則是的中位線.所以且.
又且,所以且.所以四邊形是平行四邊形.
所以.因為,為的中點,所以.
因為,所以.因為平面,所以.
又,所以平面.所以.
又,所以平面.又,所以平面.
(2)易知兩兩互相垂直,所以分別以所在的直線為軸建立如圖所示的空間直角坐標系:
因為,所以點.
則.設平面的法向量為,
由,得,
令,得平面的一個法向量為;顯然平面的一個法向量為;
設二面角的大小為,則.
故二面角的余弦值是.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率是,且經過點.
(1)求橢圓C的標準方程;
(2)過右焦點F的直線l與橢圓C相交于A,B兩點,點B關于x軸的對稱點為H,試問的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法:①將一組數(shù)據中的每個數(shù)據都加上或減去同一個常數(shù)后,均值與方差都不變;②將某校參加摸底測試的1200名學生編號為1,2,3,…,1200,從中抽取一個容量為50的樣本進行學習情況調查,按系統(tǒng)抽樣的方法分為50組,如果第一組中抽出的學生編號為20,則第四組中抽取的學生編號為92;③線性回歸方程必經過點;④在吸煙與患肺病這兩個分類變量的計算中,從獨立性檢驗知,有的把握認為吸煙與患肺病有關系時,我們說現(xiàn)有100人吸煙,那么其中有99人患肺病.其中錯誤的個數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E為PD的中點,點F在PC上,且.
(Ⅰ)求證:CD⊥平面PAD;
(Ⅱ)求二面角F–AE–P的余弦值;
(Ⅲ)設點G在PB上,且.判斷直線AG是否在平面AEF內,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來隨著我國在教育科研上的投入不斷加大,科學技術得到迅猛發(fā)展,國內企業(yè)的國際競爭力得到大幅提升.伴隨著國內市場增速放緩,國內有實力企業(yè)紛紛進行海外布局,第二輪企業(yè)出海潮到來.如在智能手機行業(yè),國產品牌已在趕超國外巨頭,某品牌手機公司一直默默拓展海外市場,在海外共設30多個分支機構,需要國內公司外派大量80后、90后中青年員工.該企業(yè)為了解這兩個年齡層員工是否愿意被外派工作的態(tài)度,按分層抽樣的方式從80后和90后的員工中隨機調查了100位,得到數(shù)據如下表:
愿意被外派 | 不愿意被外派 | 合計 | |
80后 | 20 | 20 | 40 |
90后 | 40 | 20 | 60 |
合計 | 60 | 40 | 100 |
(1)根據調查的數(shù)據,是否有99%的把握認為“是否愿意被外派與年齡有關”,并說明理由;
(2)該公司舉行參觀駐海外分支機構的交流體驗活動,擬安排6名參與調查的80后、90后員工參加.80后員工中有愿意被外派的3人和不愿意被外派的3人報名參加,從中隨機選出3人,記選到愿意被外派的人數(shù)為;90后員工中有愿意被外派的4人和不愿意被外派的2人報名參加,從中隨機選出3人,記選到愿意被外派的人數(shù)為,求的概率.
參考數(shù)據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(參考公式:,其中).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的極坐標方程為,直線的參數(shù)方程為(為參數(shù),).
(1)求曲線和直線的直角坐標方程;
(2)若直線與曲線交于,兩點,且,求以為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個命題:①在回歸模型中,預報變量y的值不能由解釋變量x唯一確定;②若變量x,y滿足關系,且變量y與z正相關,則x與z也正相關;③在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高;④以模型去擬合一組數(shù)據時,為了求出回歸方程,設,將其變換后得到線性方程,則,.
其中真命題的個數(shù)為( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓()的離心率為,且經過點.
(1)求橢圓的方程;
(2)過點作直線與橢圓交于不同的兩點,,試問在軸上是否存在定點使得直線與直線恰關于軸對稱?若存在,求出點的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com