(本小題滿(mǎn)分14分)
已知橢圓的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為.
(1)求橢圓的方程;
(2)設(shè)直線(xiàn)與橢圓交于兩點(diǎn),坐標(biāo)原點(diǎn)到直線(xiàn)的距離為,求
面積的最大值.
(1) (2)
解析試題分析:解:(1)設(shè)橢圓的半焦距為,依題意
,所以所求橢圓方程為:. …………………4分
(2)設(shè),
當(dāng)軸時(shí), …………………6分
當(dāng)與軸不垂直時(shí),設(shè)直線(xiàn)的方程為
由已知,得. …………………8分
把代入橢圓方程,整理得,
,
.
當(dāng)且僅當(dāng),即時(shí)等號(hào)成立.
當(dāng)時(shí),,綜上所述 …………………12分
所以面積的最大值為 …………………14分
考點(diǎn):考查了直線(xiàn)與橢圓的位置關(guān)系。
點(diǎn)評(píng):解決該試題的關(guān)鍵是對(duì)于第一問(wèn)的橢圓方程的準(zhǔn)確求解,同時(shí)能聯(lián)立方程組,結(jié)合韋達(dá)定理表示出弦長(zhǎng),同時(shí)來(lái)得到三角形面積的最值的求解,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)
已知橢圓的中心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)分別為,,點(diǎn)在橢圓 上,過(guò)點(diǎn)的直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),拋物線(xiàn)在點(diǎn)處的切線(xiàn)分別為,且與交于點(diǎn).
(1) 求橢圓的方程;
(2) 是否存在滿(mǎn)足的點(diǎn)? 若存在,指出這樣的點(diǎn)有幾個(gè)(不必求出點(diǎn)的坐標(biāo)); 若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓E:的焦點(diǎn)坐標(biāo)為(),點(diǎn)M(,)在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)Q(1,0),過(guò)Q點(diǎn)引直線(xiàn)與橢圓E交于兩點(diǎn),求線(xiàn)段中點(diǎn)的軌跡方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
如圖,在平面直角坐標(biāo)系中,橢圓的焦距為2,且過(guò)點(diǎn).
求橢圓的方程;
若點(diǎn),分別是橢圓的左、右頂點(diǎn),直線(xiàn)經(jīng)過(guò)點(diǎn)且垂直于軸,點(diǎn)是橢圓上異于,的任意一點(diǎn),直線(xiàn)交于點(diǎn)
(。┰O(shè)直線(xiàn)的斜率為直線(xiàn)的斜率為,求證:為定值;
(ⅱ)設(shè)過(guò)點(diǎn)垂直于的直線(xiàn)為.求證:直線(xiàn)過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
已知橢圓,橢圓以的長(zhǎng)軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓和上,,求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知m>1,直線(xiàn),橢圓C:,、分別為橢圓C的左、右焦點(diǎn).
(Ⅰ)當(dāng)直線(xiàn)過(guò)右焦點(diǎn)時(shí),求直線(xiàn)的方程;
(Ⅱ)設(shè)直線(xiàn)與橢圓C交于A、B兩點(diǎn),△A、△B的重心分別為G、H.若原點(diǎn)O在以線(xiàn)段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
如圖,拋物線(xiàn)的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,準(zhǔn)線(xiàn)與圓相切.
(Ⅰ)求拋物線(xiàn)的方程;
(Ⅱ)若點(diǎn)在拋物線(xiàn)上,且,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分12分)
在平面直角坐標(biāo)系xOy中,拋物線(xiàn)C的頂點(diǎn)在原點(diǎn),經(jīng)過(guò)點(diǎn)A(2,2),其焦點(diǎn)F在x軸上.
(1)求拋物線(xiàn)C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線(xiàn)l是拋物線(xiàn)的準(zhǔn)線(xiàn),求證:以AB為直徑的圓與準(zhǔn)線(xiàn)l相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知點(diǎn)是橢圓的右頂點(diǎn),若點(diǎn)在橢圓上,且滿(mǎn)足.(其中為坐標(biāo)原點(diǎn))
(1)求橢圓的方程;
(2)若直線(xiàn)與橢圓交于兩點(diǎn),當(dāng)時(shí),求面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com