(本小題滿分12分)
如圖,在平面直角坐標系中,橢圓的焦距為2,且過點.
求橢圓的方程;
若點,分別是橢圓的左、右頂點,直線經(jīng)過點且垂直于軸,點是橢圓上異于,的任意一點,直線交于點
(。┰O(shè)直線的斜率為直線的斜率為,求證:為定值;
(ⅱ)設(shè)過點垂直于的直線為.求證:直線過定點,并求出定點的坐標.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的右焦點為,離心率為。
(1)若,求橢圓的方程。
(2)設(shè)直線與橢圓相交于兩點,分別為線段的中點。若坐標原點在以線段為直徑的圓上,且,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知點在橢圓C: 上,且橢圓C的離心率.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點作直線交橢圓C于點A.B.△ABQ的垂心為T,是否存在實數(shù)m ,使得垂心T在y軸上.若存在,求出實數(shù)m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知三點,曲線上任一點滿足=
(1) 求曲線的方程;
(2) 設(shè)是(1)中所求曲線上的動點,定點,線段的垂直平分線與軸交于點,求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
在平面直角坐標系中,點到兩定點F1和F2的距離之和為,設(shè)點的軌跡是曲線.(1)求曲線的方程; (2)若直線與曲線相交于不同兩點、(、不是曲線和坐標軸的交點),以為直徑的圓過點,試判斷直線是否經(jīng)過一定點,若是,求出定點坐標;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓的中心在坐標原點、對稱軸為坐標軸,且拋物線的焦點是它的一個焦點,又點在該橢圓上.
(1)求橢圓的方程;
(2)若斜率為直線與橢圓交于不同的兩點,當面積的最大值時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知橢圓的離心率為,短軸一個端點到右焦點的距離為.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于兩點,坐標原點到直線的距離為,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
拋物線頂點在坐標原點,焦點與橢圓的右焦點重合,過點斜率為的直線與拋物線交于,兩點.
(Ⅰ)求拋物線的方程;
(Ⅱ)求△的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:+=1(a>b>0)的一個焦點是F(1,0),且離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)經(jīng)過點F的直線交橢圓C于M,N兩點,線段MN的垂直平分線交y軸于點P(0,y0),求y0的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com