(2012•廣元三模)已知正四面體ABCD的棱長為1,球O與正四面體的各棱都相切,且球心在正四面體的內(nèi)部,則球O的表面積為( 。
分析:將正四面體ABCD,補成正方體,則正四面體ABCD的棱為正方體的面上對角線,根據(jù)球O與正四面體的各棱都相切,且球心在正四面體的內(nèi)部,可得球O是正方體的內(nèi)切球,從而可求球O的表面積.
解答:解:將正四面體ABCD,補成正方體,則正四面體ABCD的棱為正方體的面上對角線
∵正四面體ABCD的棱長為1
∴正方體的棱長為
2
2

∵球O與正四面體的各棱都相切,且球心在正四面體的內(nèi)部,
∴球O是正方體的內(nèi)切球,其直徑為
2
2

∴球O的表面積為×(
2
4
)
2
=
π
2

故選C
點評:本題考查球的表面積公式解題的關鍵是將正四面體ABCD,補成正方體,使得球O是正方體的內(nèi)切球.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•廣元三模)在等差數(shù)列{an}中,a3+a8+a13=m,其前n項Sn=5m,則n=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•廣元三模)在平面直角坐標系中,橫、縱坐標均為整數(shù)的點叫做格點.若函y=f(x)的圖象恰好經(jīng)過k 個格點,則稱函數(shù)y=f(x)為k階格點函數(shù).已知函數(shù):①y=2sinx;②y=cos(x+
π6
);③y=ex-1;④y=x2.其中為一階格點函數(shù)的序號為
①③
①③
(注:把你認為正確論斷的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•廣元三模)在△ABC中,sinA=
5
13
,cosB=
3
5
,則cosC=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•廣元三模)在一次運動會中,某小組內(nèi)的甲、乙、丙三名選手進行單循環(huán)賽(即每兩人比賽一場)共賽三場,每場比賽勝者得1分,輸者得0分,、沒有平局;在參與的每一場比賽中,甲勝乙的概率為
1
3
,甲勝丙的概率為
1
4
,乙勝丙的概率為
1
3

(I)求甲獲得小組第一且丙獲得小組第二的概率;
(II)設該小組比賽中甲的得分為ξ,求Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•廣元三模)直線y=x-4和雙曲線
x
2
 
9
-
y
2
 
3
=1
相交于A、B兩點,則線段AB的長度為(  )

查看答案和解析>>

同步練習冊答案