二次函數(shù)f(x)=x2-2ax+1的圖象關(guān)于直線x=1對稱,則直線似ax+y+1=0的傾斜角為( 。
A、arctan2
B、
4
C、
π
4
D、π-arctan2
分析:先利用二次函數(shù)的對稱軸求出a 的值,從而得到直線的斜率,進而得到直線的傾斜角.
解答:解:∵二次函數(shù)f(x)=x2-2ax+1的圖象關(guān)于直線x=1對稱,
∴a=1,
直線 ax+y+1=0 即 x+y+1=0,斜率等于-1,
故直線 ax+y+1=0的傾斜角等于
4
,
故選 B.
點評:本題考查二次函數(shù)的對稱軸方程,直線的傾斜角和斜率的關(guān)系,以及傾斜角的取值范圍,已知三角函數(shù)值求角的大。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a,b,c為實數(shù)a不為零),且同時滿足下列條件:
(1)f(-1)=0;
(2)對于任意的實數(shù)x,都有f(x)-x≥0;
(3)當x∈(0,2)時有f(x)≤(
x+12
)2

①求f(1);
②求a,b,c的值;
③當x∈[-1,1]時,函數(shù)g(x)=f(x)-mx(m∈R)是單調(diào)函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a∈N*),若不等式f(x)<2x的解集為(1,4),且方程f(x)=x有兩個相等的實數(shù)根.
(1)求f(x)的解析式;
(2)若不等式f(x)>mx在x∈(1,+∞)上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c的圖象過點(0,1)和(1,4),且對于任意的實數(shù)x,不等式f(x)≥4x恒成立.
(1)求函數(shù)f(x)的表達式;
(2)設(shè)g(x)=kx+1,若F(x)=log2[g(x)-f(x)]在區(qū)間[1,2]上是增函數(shù),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx(a、b為常數(shù)且a≠0)滿足條件:f(-x+5)=f(x-3),且方程f(x)=x有等根.
(1)求f(x)的解析式;
(2)函數(shù)f(x)在(x∈[t,t+1],t∈R)的最大值為u(t),求u(t)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州高級中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)二次函數(shù)f(x)=ax2+bx+c的圖象過點(0,1)和(1,4),且對于任意的實數(shù)x,不等式f(x)≥4x恒成立.
(1)求函數(shù)f(x)的表達式;
(2)設(shè)g(x)=kx+1,若F(x)=log2[g(x)-f(x)]在區(qū)間[1,2]上是增函數(shù),求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案