【題目】已知橢圓C(a>b>0)的左.右頂點(diǎn)分別為A,B,離心率為,點(diǎn)P為橢圓上一點(diǎn).

(1) 求橢圓C的標(biāo)準(zhǔn)方程;

(2) 如圖,過(guò)點(diǎn)C(0,1)且斜率大于1的直線(xiàn)l與橢圓交于M,N兩點(diǎn),記直線(xiàn)AM的斜率為k1,直線(xiàn)BN的斜率為k2,若k12k2,求直線(xiàn)l斜率的值.

【答案】(1)1;(2) k

【解析】

(1)根據(jù)已知條件,建立方程組,求出a,b,即可得到橢圓的標(biāo)準(zhǔn)方程.

(2)設(shè)出直線(xiàn)l方程為ykx1M(x1,y1)N(x2,y2),將直線(xiàn)l方程與橢圓方程聯(lián)立,求出x1x2x1x2,根據(jù)條件求出k1k2,代入k12k2化簡(jiǎn)計(jì)算,得到關(guān)于k的方程,解方程求出k的值.

(1)因?yàn)闄E圓的離心率為,所以a2c.

又因?yàn)?/span>a2b2c2,所以bc.

所以橢圓的標(biāo)準(zhǔn)方程為1.

又因?yàn)辄c(diǎn)P為橢圓上一點(diǎn),所以1,解得c1.

所以橢圓的標(biāo)準(zhǔn)方程為1.

2)由橢圓的對(duì)稱(chēng)性可知直線(xiàn)l的斜率一定存在,設(shè)其方程為ykx1.

設(shè)M(x1y1),N(x2,y2)

聯(lián)立直線(xiàn)與橢圓的方程組,消去y可得(34k2)x28kx80.

所以由根與系數(shù)關(guān)系可知x1x2=-,x1x2=-.

因?yàn)?/span>k1k2,且k12k2,所以.

,①

又因?yàn)?/span>M(x1,y1),N(x2,y2)在橢圓上,

所以.②

將②代入①可得:,即3x1x210(x1x2)120.

所以310120,即12k220k30.

解得kk,又因?yàn)?/span>k>1,所以k.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知以為焦點(diǎn)的橢圓過(guò)點(diǎn).

1)求橢圓方程.

2)設(shè)橢圓的左頂點(diǎn)為,線(xiàn)段的垂直平分線(xiàn)交橢圓于兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為調(diào)研學(xué)校師生的環(huán)境保護(hù)意識(shí),決定在本市所有學(xué)校中隨機(jī)抽取60所進(jìn)行環(huán)境綜合考評(píng)成績(jī)達(dá)到80分以上(含80分)為達(dá)標(biāo).60所學(xué)校的考評(píng)結(jié)果頻率分布直方圖如圖所示(其分組區(qū)間為[50,60),[60,70),[70,80),[80,90),[90,100]).

)試根據(jù)樣本估汁全市學(xué)校環(huán)境綜合考評(píng)的達(dá)標(biāo)率;

)若考評(píng)成績(jī)?cè)?/span>[90.100]內(nèi)為優(yōu)秀.且甲乙兩所學(xué)?荚u(píng)結(jié)果均為優(yōu)秀從考評(píng)結(jié)果為優(yōu)秀的學(xué)校中隨機(jī)地抽取兩所學(xué)校作經(jīng)驗(yàn)交流報(bào)告,求甲乙兩所學(xué)校至少有一所被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓,是圓M內(nèi)一個(gè)定點(diǎn),P是圓上任意一點(diǎn),線(xiàn)段PN的垂直平分線(xiàn)l和半徑MP相交于點(diǎn)Q,當(dāng)點(diǎn)P在圓M上運(yùn)動(dòng)時(shí),點(diǎn)Q的軌跡為曲線(xiàn)E.

1)求曲線(xiàn)E的方程;

2)已知拋物線(xiàn)上,是否存在直線(xiàn)m與曲線(xiàn)E交于G,H,使得G,H中點(diǎn)F落在直線(xiàn)y2x上,并且與拋物線(xiàn)相切,若直線(xiàn)m存在,求出直線(xiàn)m的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)若,求實(shí)數(shù)的取值范圍;

(2)設(shè)函數(shù)的極大值為,極小值為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱柱中,,,平面,.

(1)證明:.

(2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的頂點(diǎn),邊上的中線(xiàn)所在直線(xiàn)方程為,的角平分線(xiàn)所在直線(xiàn)方程為

(I)求頂點(diǎn)的坐標(biāo);

(II)求直線(xiàn)的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)若直線(xiàn)與函數(shù)的圖象相切,求實(shí)數(shù)的值;

(2)若存在,,使,且,求實(shí)數(shù)的取值范圍;

(3)當(dāng)時(shí),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)在其圖象上存在不同的兩點(diǎn),,其坐標(biāo)滿(mǎn)足條件: 的最大值為0,則稱(chēng)為“柯西函數(shù)”,則下列函數(shù):① :②:③:④.

其中為“柯西函數(shù)”的個(gè)數(shù)為( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案