【題目】在中,角,,的對邊分別是,且.
(1)求角的大;
(2)已知等差數(shù)列的公差不為零,若,且,,成等比數(shù)列,求數(shù)列的前項和.
【答案】(1);(2).
【解析】
1)首先利用正弦定理和三角函數(shù)關(guān)系式的恒等變換求出C的值.(2)利用(1)的結(jié)論,進(jìn)一步利用等差數(shù)列的性質(zhì)求出數(shù)列的首項和公差,進(jìn)一步求出數(shù)列的通項公式,最后利用裂項相消法求出數(shù)列的和.
(1)在△ABC中,角A,B,C的對邊分別是a,b,c,且acosB+bcosA=2ccosC.
利用正弦定理sinAcosB+sinBcosA=2sinCcosC,
所以sin(A+B)=sinC=2sinCcosC,
由于0<C<π,
解得C.
(2)設(shè)公差為d的等差數(shù)列{an}的公差不為零,若a1cosC=1,則a1=2,
且a1,a3,a7成等比數(shù)列,所以,解得d=1.
故an=2+n﹣1=n+1.
所以,
所以,
,
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的棱長為1,線段上有兩個動點,且,則下列結(jié)論中錯誤的是( )
A.B.平面ABCD
C.三棱錐的體積為定值D.的面積與的面積相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4cosωxsin(ωx)(ω>0)的最小正周期是π.
(1)求函數(shù)f(x)在區(qū)間(0,π)上的單調(diào)遞增區(qū)間;
(2)若f(x0),x0∈[,],求cos2x0的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為的函數(shù)是奇函數(shù)
(Ⅰ)求值;
(Ⅱ)判斷并證明該函數(shù)在定義域上的單調(diào)性;
(Ⅲ)若對任意的,不等式恒成立,求實數(shù)的取值范圍;
(Ⅳ)設(shè)關(guān)于的函數(shù)有零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)據(jù),,,,的平均值為2,方差為1,則數(shù)據(jù),,,相對于原數(shù)據(jù)( )
A.一樣穩(wěn)定B.變得比較穩(wěn)定C.變得比較不穩(wěn)定D.穩(wěn)定性不可以判斷
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)指出函數(shù)的基本性質(zhì):定義域,奇偶性,單調(diào)性,值域(結(jié)論不需證明),并作出函數(shù)的圖象;
(2)若關(guān)于的不等式恒成立,求實數(shù)的取值范圍;
(3)若關(guān)于的方程恰有個不同的實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,要測量山頂上的電視塔FG的高度,已知山的西面有一棟樓AC(該樓的高度低于山的高度).試設(shè)計在樓AC上測山頂電視塔高度的測量、計算方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題:
①回歸直線過樣本點中心(,)
②將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,平均值不變
③將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變
④在回歸方程=4x+4中,變量x每增加一個單位時,y平均增加4個單位
其中錯誤命題的序號是( 。
A.①B.②C.③D.④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某海濱浴場一天的海浪高度是時間的函數(shù),記作,下表是某天各時的浪高數(shù)據(jù):
0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | |
1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
(1)選用一個三角函數(shù)來近似描述這個海濱浴場的海浪高度與時間的函數(shù)關(guān)系;
(2)依據(jù)規(guī)定,當(dāng)海浪高度不少于時才對沖浪愛好者開放海濱浴場,請依據(jù)(1)的結(jié)論,判斷一天內(nèi)的至之間,有多少時間可供沖浪愛好者進(jìn)行沖浪?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com