設(shè) P:函數(shù)y=cx在R上單調(diào)遞減.
Q:函數(shù)y=lg(x2-cx+2)的定義域為R,如果P且Q為假命題、P或Q為真命題,求c的取值范圍.

解:P:∵函數(shù)y=cx在R上單調(diào)遞減.
∴0<C<1,
Q:∵函數(shù)y=lg(x2-cx+2)的定義域為R,
∴x2-cx+2>0恒成立,

∵P且Q為假命題、P或Q為真命題
∴當(dāng)P真Q假時,c∈∅
當(dāng)P假Q(mào)真時,c
∴c的取值范圍為
分析:如果P∧Q為假命題,P∨Q為真命題,則“p”、“q”中一個為真命題、一個為假命題.然后再分類討論即可求解.
點評:(1)由簡單命題和邏輯連接詞構(gòu)成的復(fù)合命題的真假可以用真值表來判斷,反之根據(jù)復(fù)合命題的真假也可以判斷簡單命題的真假.假若p且q真,則p 真,q也真;若p或q真,則p,q至少有一個真;若p且q假,則p,q至少有一個假.(2)可把“p或q”為真命題轉(zhuǎn)化為并集的運算;把“p且q”為真命題轉(zhuǎn)化為交集的運算,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知c>0,設(shè)P:函數(shù)y=cx在R上單調(diào)遞減,Q:不等式x+|x-2c|>1的解集為R.如果P和Q有且僅有一個正確,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知c>0,設(shè)p:函數(shù)y=cx在R上單調(diào)遞減;q:函數(shù)g(x)=lg(2cx2+2x+1)的值域為R,如果“p且q”為假命題,“p或q為真命題,則c的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知c>0,設(shè)P:函數(shù)y=cx在R上單調(diào)遞減,Q:不等式x+|x-2c|>1對任意實數(shù)x恒成立,若“P或Q”為真,“P且Q”為假,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知c>0,設(shè)p:函數(shù)y=cx在R上單調(diào)遞減; Q:x+|x-2c|>1不等式的解集為R.如果p和Q有且僅有一個正確,求c的取值范圍
(0,
1
2
]∪[1,+∞)
(0,
1
2
]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知c>0,設(shè)p:函數(shù)y=cx在R上單調(diào)遞減;q:函數(shù)g(x)=lg(2cx2+2x+1)的定義域為R,若“p且q”為假命題,“p或q”為真命題,求c的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案