【題目】北京市2016年12個月的PM2.5平均濃度指數(shù)如圖所示.由圖判斷,四個季度中PM2.5的平均濃度指數(shù)方差最小的是( )
A.第一季度
B.第二季度
C.第三季度
D.第四季度
【答案】B
【解析】解:根據(jù)圖中數(shù)據(jù)知,第一季度的數(shù)據(jù)是72.25,43.96,93.13;
第二季度的數(shù)據(jù)是66.5,55.25,58.67;
第三季度的數(shù)據(jù)是59.36,38.67,51.6;
第四季度的數(shù)據(jù)是82.09,104.6,168.05;
觀察得出第二季度的數(shù)據(jù)波動性最小,所以第二季度的PM2.5平均濃度指數(shù)方差最小.
故選:B.
【考點精析】本題主要考查了極差、方差與標(biāo)準差的相關(guān)知識點,需要掌握標(biāo)準差和方差越大,數(shù)據(jù)的離散程度越大;標(biāo)準差和方程為0時,樣本各數(shù)據(jù)全相等,數(shù)據(jù)沒有離散性;方差與原始數(shù)據(jù)單位不同,解決實際問題時,多采用標(biāo)準差才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線 ﹣ =1(a>0,b>0)的左、右焦點分別是F1 , F2 , 過F2的直線交雙曲線的右支于P,Q兩點,若|PF1|=|F1F2|,且3|PF2|=2|QF2|,則該雙曲線的離心率為( )
A.
B.
C.2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)作出函數(shù)y=f(x)在一個周期內(nèi)的圖象,并寫出其單調(diào)遞減區(qū)間;
(2)當(dāng) 時,求f(x)的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在幾何體ABCDEF中,底面ABCD為矩形,EF∥CD,AD⊥FC.點M在棱FC上,平面ADM與棱FB交于點N.
(Ⅰ)求證:AD∥MN;
(Ⅱ)求證:平面ADMN⊥平面CDEF;
(Ⅲ)若CD⊥EA,EF=ED,CD=2EF,平面ADE∩平面BCF=l,求二面角A﹣l﹣B的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,PC⊥平面ABCD,點E在棱PA上.
(Ⅰ)求證:直線BD⊥平面PAC;
(Ⅱ)若PC∥平面BDE,求證:AE=EP;
(Ⅲ)是否存在點E,使得四面體A﹣BDE的體積等于四面體P﹣BDC的體積的 ?若存在,求出 的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是直角梯形,側(cè)棱SA丄底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1.M是棱SB的中點.
(1)求證:AM∥平面SCD;
(2)求平面SCD與平面SAB所成的二面角的余弦值;
(3)設(shè)點N是直線CD上的動點,MN與平面SAB所成的角為θ,求sinθ的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:函數(shù)f(x)=(m2﹣1) 上為增函數(shù);命題q:函數(shù)g(x)=x2﹣2elnx﹣m有零點.
(I)若p∨q為假命題,求實數(shù)m的取值范圍;
(Ⅱ)若p∨q為真命題,p∧q為假命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx﹣ )(ω>0)的圖象與x軸的相鄰兩個交點的距離為 .
(1)求w的值;
(2)設(shè)函數(shù)g(x)=f(x)+2cos2x﹣1,求g(x)在區(qū)間 上的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com