如圖,已知多面體的底面是邊長(zhǎng)為的正方形,底面,,且.
(Ⅰ )求多面體的體積;
(Ⅱ )求證:平面EAB⊥平面EBC;
(Ⅲ)記線段CB的中點(diǎn)為K,在平面內(nèi)過K點(diǎn)作一條直線與平面平行,要求保留作圖痕跡,但不要求證明.
(Ⅰ). (Ⅱ )見解析.(Ⅲ)利用三角形中位線定理,取線段DC的中點(diǎn),連接即為所求.
【解析】
試題分析:(Ⅰ)連接ED,利用“分割法”計(jì)算得.(Ⅱ )根據(jù)ABCD為正方形,得到AB⊥BC. 利用EA⊥平面ABCD,得到BC⊥EA. 證得BC⊥平面EAB.
根據(jù)BC⊂平面EBC,得到平面EAB⊥平面EBC.(Ⅲ)取線段DC的中點(diǎn);連接,則直線即為所求.
試題解析:(Ⅰ)如圖,連接ED,
∵底面且,∴底面
∴
∵
∴面 1分
∴ 2分
3分
∴. 5分
(Ⅱ )∵ABCD為正方形,∴AB⊥BC. 6分
∵EA⊥平面ABCD,BC⊂平面ABCD,
∴BC⊥EA. 7分
又AB∩EA=A,∴BC⊥平面EAB. 8分
又∵BC⊂平面EBC,
∴平面EAB⊥平面EBC. 10分
(Ⅲ)取線段DC的中點(diǎn);連接,則直線即為所求. 11分
圖上有正確的作圖痕跡 12分
考點(diǎn):1、平行關(guān)系,2、垂直關(guān)系,3、體積計(jì)算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建福州市畢業(yè)班質(zhì)量檢查理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知多面體的底面是邊長(zhǎng)為的正方形,底面,,且.
(Ⅰ)求多面體的體積;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)記線段BC的中點(diǎn)為K,在平面ABCD內(nèi)過點(diǎn)K作一條直線與平面平行,要求保留作圖痕跡,但不要求證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省廈門市高一(下)期末數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com