分析 利用三棱柱ABC-A1B1C1的表面積是27,求出球的半徑,再求球的表面積.
解答 解:∵三角形ABC的周長為6$\sqrt{3}$,
∴可設(shè)三角形ABC的邊長為2$\sqrt{3}$,
設(shè)球O的半徑為r,則
∵三棱柱ABC-A1B1C1的表面積是27,
∴2×$\frac{\sqrt{3}}{4}$×(2$\sqrt{3}$)2+3×2$\sqrt{3}$×2r=27,
∴r=$\frac{3\sqrt{3}}{4}-\frac{1}{2}$,
∴球的表面積為4π($\frac{3\sqrt{3}}{4}-\frac{1}{2}$)2=$\frac{31-12\sqrt{3}}{4}π$.
故答案為:$\frac{31-12\sqrt{3}}{4}π$.
點評 本題考查求球的表面積,考查學(xué)生的計算能力,確定球的半徑是關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | π | B. | $\frac{32\sqrt{3}}{27}$π | C. | $\frac{3}{4}$π | D. | $\frac{32}{27}$π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x3 | B. | y=|x|+1 | C. | y=-x2+1 | D. | y=2-|x| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com