1.若直線x+my-1=0與不等式組$\left\{\begin{array}{l}{x+2y-4≤0}\\{x-y+2≤0}\\{x≥-1}\end{array}\right.$,表示的平面區(qū)域有公共點(diǎn),則實(shí)數(shù)m的取值范圍是(  )
A.[$\frac{1}{2}$,2]B.[$\frac{1}{3}$,3]C.(-∞,$\frac{1}{3}$]∪[3,+∞)D.(-∞,$\frac{1}{2}$]∪[2,+∞)

分析 由題意作平面區(qū)域,從而寫(xiě)出點(diǎn)B(1,0),G(0,2),H(-1,1),從而結(jié)合圖象可得-2≤-$\frac{1}{m}$≤-$\frac{1}{2}$,從而求得.

解答 解:由題意作平面區(qū)域如下,
,
易知點(diǎn)B(1,0),G(0,2),H(-1,1),
而kBG=$\frac{2-0}{0-1}$=-2,kBH=$\frac{1-0}{-1-1}$=-$\frac{1}{2}$,
由x+my-1=0知y=-$\frac{1}{m}$x+$\frac{1}{m}$,
結(jié)合圖象可知,
-2≤-$\frac{1}{m}$≤-$\frac{1}{2}$,
故$\frac{1}{2}$≤m≤2,
故選:A.

點(diǎn)評(píng) 本題考查了數(shù)形結(jié)合的思想應(yīng)用及線性規(guī)劃的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知m,n表示不同的直線,α,β表示不同的平面,則下列命題正確的個(gè)數(shù)是( 。
①若m⊥α,n⊥α,則m∥n;
②若m⊥n,n⊥α,則m∥α;
③若m⊥β,α⊥β,則m∥α;
④若m⊥α,m⊥β,則α∥β.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)集合P={x|x2+2x-8≤0},$Q=\{y|y={(\frac{1}{3})^x},x∈(-2,1)\}$,則P∩Q=( 。
A.$(-4,\frac{1}{9})$B.$(\frac{1}{9},2]$C.$(\frac{1}{3},2]$D.$(\frac{1}{3},2)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)集合A={x|x2+x-2<0},B={-1,0,3},則A∩B=( 。
A.{-1,0}B.{0,3}C.{-1,3}D.{-1,0,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ 3x-y-3≤0\\ x+2y-2≥0\end{array}\right.$,且z=a|x-2|+y的最小值為1,則a的值$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.${(x-\frac{1}{4x})^6}$的展開(kāi)式中常數(shù)項(xiàng)為$-\frac{5}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)在區(qū)間[2,4]上是增函數(shù),且f(2)=-1,f(4)=1,則f(3)=0,f(x)的一個(gè)單調(diào)遞減區(qū)間是[0,2](寫(xiě)出一個(gè)即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)y=$\sqrt{3}$cos2x-sin2x的一個(gè)單調(diào)區(qū)間是( 。
A.[-$\frac{π}{6}$,$\frac{π}{6}$]B.[-$\frac{π}{6}$,$\frac{2π}{3}$]C.[$\frac{π}{12}$,$\frac{7π}{12}$]D.[-$\frac{π}{12}$,$\frac{5π}{12}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足acosB=bcosA.
(1)判斷△ABC的形狀;
(2)求sin(2A+$\frac{π}{6}$)-2cos2B的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案