【題目】已知函數f(x)= sinωx+cosωx(ω>0)的圖象與x軸交點的橫坐標構成一個公差為 的等差數列,把函數f(x)的圖象沿x軸向左平移 個單位,得到函數g(x)的圖象.關于函數g(x),下列說法正確的是( )
A.在[ , ]上是增函數
B.其圖象關于直線x=﹣ 對稱
C.函數g(x)是奇函數
D.當x∈[ , π]時,函數g(x)的值域是[﹣2,1]
【答案】D
【解析】解:∵f(x)= sinωx+cosωx= = ,
由題意知 ,則T=π,∴ω= ,
∴ ,
把函數f(x)的圖象沿x軸向左平移 個單位,得g(x)=f(x+ )=2 =2cos2x.
其圖象如圖:
由圖可知,函數在[ , ]上是減函數,A錯誤;
其圖象的對稱中心為( ),B錯誤;
函數為偶函數,C錯誤;
, ,
∴當x∈[ , π]時,函數g(x)的值域是[﹣2,1],D正確.
故選:D.
【考點精析】利用函數y=Asin(ωx+φ)的圖象變換對題目進行判斷即可得到答案,需要熟知圖象上所有點向左(右)平移個單位長度,得到函數的圖象;再將函數的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數的圖象;再將函數的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數的圖象.
科目:高中數學 來源: 題型:
【題目】設等差數列{an}的前n項和為Sn , 且S4=4S2 , a2+a4=10.
(1)求數列{an}通項公式;
(2)若數列{bn}滿足 + +…+ =1﹣ ,n∈N* , 求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在銳角△ABC中,a,b,c分別為內角A,B,C所對邊的邊長,且滿足a-2bsin A=0.
(1)求角B的大小;
(2)若a+c=5,且a>c,b=,求·的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,ABCD為矩形,PA⊥平面ABCD,PA=AD,M,N,Q分別是PC,AB,CD的中點.
求證:(1)MN∥平面PAD;
(2)平面QMN∥平面PAD.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成角為60°.
(1)求二面角F-BE-D的余弦值;
(2)設點M是線段BD上一個動點,試確定點M的位置,使得AM∥平面BEF,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
(1)當a=1時,求函數f(x)在[1,e]上的最小值和最大值;
(2)當a≤0時,討論函數f(x)的單調性;
(3)是否存在實數a,對任意的x1,x2(0,+∞),且x1≠x2,都有恒成立.若存在,求出a的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列命題:
①命題“若b2-4ac<0,則方程ax2+bx+c=0(a≠0)沒有實根”的否命題;
②命題“在△ ABC中,若AB=BC=CA,則△ ABC為等邊三角形”的逆命題;
③命題“若a>b>0,則a>b>0”的逆否命題;
④命題“若m>1,則mx2-2(m+1)x+(m-3)<0的解集為R”的逆命題.
其中真命題的序號為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司計劃購買2臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200元.在機器使用期間,如果備件不足再購買,則每個500元.現需決策在購買機器時應同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內更換的易損零件數,得下面柱狀圖:
以這100臺機器更換的易損零件數的頻率代替1臺機器更換的易損零件數發(fā)生的概率,記X表示2臺機器三年內共需更換的易損零件數,n表示購買2臺機器的同時購買的易損零件數.
(1)求X的分布列;
(2)若要求P(X≤n)≤0.5,確定n的最小值;
(3)以購買易損零件所需費用的期望值為決策依據,在n=19與n=20之中選其一,應選用哪個?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com