【題目】如圖,四棱錐中,
為正三角形,
,
為棱
的中點(diǎn).
(1)求證:平面平面
;
(2)若直線與平面
所成角為
,求二面角
的余弦值.
【答案】(1)見解析;(2)
【解析】試題分析:
本題主要考查線面、面面垂直的判定與性質(zhì)、利用空間向量求二面角.(1)
,可得
為平行四邊形,易得
,又
,可得
平面
,則結(jié)論易得;(2)由題意證明
,建立空間直角坐標(biāo)系,求出
又
,利用向量的夾角公式
求解即可.
試題解析:
(1)
為
中點(diǎn),
且
又且
,
所以且
為平行四邊形,
.
又為正三角形,
從而
又
平面
又平面
平面
平面
.
(2)因?yàn)?/span>
所以
又
所以
平面
因此與平面
所成的角,
故,所以
.
建立如圖所示的空間直角坐標(biāo)系.
設(shè)AD=4,則B(8,0,0),P(0,2),E(4,1
),
所以
設(shè)為平面
的法向量,
由,
令
由(1)知為平面
的一個(gè)法向量,
所以.
由圖形知二面角為鈍角,
所以二面角的余弦值為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面
為平行四邊形,
,
,
,
點(diǎn)在底面
內(nèi)的射影
在線段
上,且
,
,
為
的中點(diǎn),
在線段
上,且
.
(Ⅰ)當(dāng)時(shí),證明:平面
平面
;
(Ⅱ)當(dāng)平面與平面
所成的二面角的正弦值為
時(shí),求四棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,公園有一塊邊長為2的等邊△ABC的邊角地,現(xiàn)修成草坪,圖中DE把草坪分成面積相等的兩部分,D在AB上,E在AC上.
(1)設(shè)AD=x(x≥1),ED=y,求用x表示y的函數(shù)關(guān)系式;
(2)如果DE是灌溉水管,為節(jié)約成本,希望它最短,DE的位置應(yīng)在哪里?如果DE是參觀線路,則希望它最長,DE的位置又應(yīng)在哪里?請予證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】電視傳媒公司為了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:
非體育迷 | 體育迷 | 合計(jì) | |
男 | |||
女 | 10 | 55 | |
合計(jì) |
將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.
(1)根據(jù)已知條件完成上面的2×2列聯(lián)表,若按95%的可靠性要求,并據(jù)此資料,你是否認(rèn)為“體育迷”與性別有關(guān)?
(2)現(xiàn)在從該地區(qū)非體育迷的電視觀眾中,采用分層抽樣方法選取5名觀眾,求從這5名觀眾選取兩人進(jìn)行訪談,被抽取的2名觀眾中至少有一名女生的概率.
附:
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三棱柱中,
為正方形,
為菱形,
.
(1)求證:平面⊥平面
;
(2)若是
中點(diǎn),∠
是二面角
的平面角,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列中,
,且
.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車的推廣給消費(fèi)者帶來全新消費(fèi)體驗(yàn),迅速贏得廣大消費(fèi)者的青睞,然而,同時(shí)也暴露出管理、停放、服務(wù)等方面的問題,為了了解公眾對共享單車的態(tài)度(提倡或不提倡),某調(diào)查小組隨機(jī)地對不同年齡段50人進(jìn)行調(diào)查,將調(diào)查情況整理如下表:
并且,年齡在和
的人中持“提倡”態(tài)度的人數(shù)分別為5和3,現(xiàn)從這兩個(gè)年齡段中隨機(jī)抽取2人征求意見.
(Ⅰ)求年齡在中被抽到的2人都持“提倡”態(tài)度的概率;
(Ⅱ)求年齡在中被抽到的2人至少1人持“提倡”態(tài)度的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的滿足
,前
項(xiàng)的和為
,且
.
(1)求的值;
(2)設(shè),證明:數(shù)列
是等差數(shù)列;
(3)設(shè),若
,求對所有的正整數(shù)
都有
成立的
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com