【題目】在四棱錐中,底面為平行四邊形, , , , 點在底面內(nèi)的射影在線段上,且, , 為的中點, 在線段上,且.
(Ⅰ)當(dāng)時,證明:平面平面;
(Ⅱ)當(dāng)平面與平面所成的二面角的正弦值為時,求四棱錐的體積.
【答案】(Ⅰ)見解析;(Ⅱ).
【解析】試題分析:(Ⅰ)接,作交于點,則四邊形為平行四邊形,在中由余弦定理得,由勾股定理可得,在中, , 分別是, 的中點,結(jié)合中位線及平行的傳遞性可得,故可得平面,由線面平行判定定理可得結(jié)論;(Ⅱ)以為坐標(biāo)原點, , , 所在直線分別為軸, 軸, 軸建立如圖所示的空間直角坐標(biāo)系,利用空間向量與二面角平面角之間關(guān)系可得: ,由棱錐的體積公式可得結(jié)果.
試題解析:(Ⅰ)證明:連接,作交于點,則四邊形為平行四邊形,
,在中, , , ,由余弦定理得.
所以,從而有.
在中, , 分別是, 的中點,
則, ,
因為,所以.
由平面, 平面,
得,又, ,
得平面,又平面,
所以平面平面.
(Ⅱ)以為坐標(biāo)原點, , , 所在直線分別為軸, 軸, 軸建立如圖所示的空間直角坐標(biāo)系,則, , , , , .
平面的一個法向量為.
設(shè)平面的法向量為,
由, ,得令,得.
由題意可得, ,
解得,
所以四棱錐的體積.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 若4Sn=(2n﹣1)an+1+1,且a1=1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)cn= ,數(shù)列{cn}的前n項和為Tn .
①求Tn;
②對于任意的n∈N*及x∈R,不等式kx2﹣6kx+k+7+3Tn>0恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了得到函數(shù)y=sin(2x﹣ )的圖象,可以將函數(shù)y=cos2x的圖象( )
A.向右平移
B.向右平移
C.向左平移
D.向左平移
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)討論函數(shù)的單調(diào)性,并證明當(dāng)時, ;
(Ⅱ)證明:當(dāng)時,函數(shù)有最小值,設(shè)最小值為,求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)= sin2x+2cos2x+m在區(qū)間[0, ]上的最大值為6,求常數(shù)m的值及此函數(shù)當(dāng)x∈R時的最小值,并求相應(yīng)的x的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位有工程師6人,技術(shù)員12人,技工18人,要從這些人中取一個容量為n的樣本;如果采用系統(tǒng)抽樣和分層抽樣方法抽取,無須剔除個體;如果樣本容量增加1個,則在采用系統(tǒng)抽樣時需要在總體中先剔除一個個體,則n的值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com