已知橢圓的離心率為,且過點(diǎn).
(1)求橢圓的方程;
(2)若過點(diǎn)C(-1,0)且斜率為的直線與橢圓相交于不同的兩點(diǎn),試問在軸上是否存在點(diǎn),使是與無關(guān)的常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
(1)橢圓方程為。
(2)在x軸上存在點(diǎn)M(), 使是與K無關(guān)的常數(shù).

試題分析:(1)∵橢圓離心率為,
,∴.        1分
橢圓過點(diǎn)(,1),代入橢圓方程,得.        2分
所以.                          4分
∴橢圓方程為,即.           5分
(2)在x軸上存在點(diǎn)M,使是與K無關(guān)的常數(shù).   6分
證明:假設(shè)在x軸上存在點(diǎn)M(m,0),使是與k無關(guān)的常數(shù),
∵直線L過點(diǎn)C(-1,0)且斜率為K,∴L方程為,
 得.      7分
設(shè),則      8分

              9分
=
=
=
=                 10分
設(shè)常數(shù)為t,則.                11分
整理得對(duì)任意的k恒成立,
解得,                    12分
即在x軸上存在點(diǎn)M(), 使是與K無關(guān)的常數(shù).       13分
點(diǎn)評(píng):中檔題,曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。求橢圓標(biāo)準(zhǔn)方程時(shí),主要運(yùn)用了橢圓的幾何性質(zhì),建立了a,bac的方程組。(2)作為研究,應(yīng)用韋達(dá)定理,建立了m的函數(shù)式,利用函數(shù)觀點(diǎn),求得m的值,肯定存在性,使問題得解。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的焦點(diǎn)為F2,點(diǎn)F1與F2關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,以F1,F2為焦點(diǎn)的橢圓C過點(diǎn).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn),過點(diǎn)F2作直線與橢圓C交于A,B兩點(diǎn),且,若的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓:,離心率為,焦點(diǎn)的直線交橢圓于兩點(diǎn),且的周長(zhǎng)為4.
(Ⅰ)求橢圓方程;
(Ⅱ) 直線與y軸交于點(diǎn)P(0,m)(m0),與橢圓C交于相異兩點(diǎn)A,B且.若,求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

點(diǎn)P是橢圓外的任意一點(diǎn),過點(diǎn)P的直線PA、PB分別與橢圓相切于A、B兩點(diǎn)。
(1)若點(diǎn)P的坐標(biāo)為,求直線的方程。
(2)設(shè)橢圓的左焦點(diǎn)為F,請(qǐng)問:當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),是否總是相等?若是,請(qǐng)給出證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的長(zhǎng)軸長(zhǎng)為4,且過點(diǎn)
(1)求橢圓的方程;
(2)設(shè)、、是橢圓上的三點(diǎn),若,點(diǎn)為線段的中點(diǎn),、兩點(diǎn)的坐標(biāo)分別為、,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過橢圓的左頂點(diǎn)A且斜率為的直線交橢圓于另一點(diǎn),且點(diǎn)軸上的射影恰為右焦點(diǎn),若,則橢圓的離心率的值是             .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓C:的左右焦點(diǎn)分別為F1,F2,P為橢圓上異于端點(diǎn)的任意的點(diǎn),PF1,PF2的中點(diǎn)分別為M,N,O為坐標(biāo)原點(diǎn),四邊形OMPN的周長(zhǎng)為2,則△的周長(zhǎng)是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知分別是橢圓的左右焦點(diǎn),過垂直與軸的直線交橢圓于兩點(diǎn),若是銳角三角形,則橢圓離心率的范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的方程為,其離心率為,經(jīng)過橢圓焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為3.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l:與橢圓C交于A、B兩點(diǎn),P為橢圓上的點(diǎn),O為坐標(biāo)原點(diǎn),且滿足,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案