一動(dòng)圓截直線和直線所得弦長(zhǎng)分別為,求動(dòng)圓圓心的軌跡方程。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓G:+y2=1.過(guò)軸上的動(dòng)點(diǎn)(m,0)作圓x2+y2=1的切線l交橢圓G于A,B兩點(diǎn).
(1)求橢圓G上的點(diǎn)到直線的最大距離;
(2)①當(dāng)實(shí)數(shù)時(shí),求A,B兩點(diǎn)坐標(biāo);
②將|AB|表示為m的函數(shù),并求|AB|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓:,點(diǎn),直線.
(1)求與圓相切,且與直線垂直的直線方程;
(2)在直線上(為坐標(biāo)原點(diǎn)),存在定點(diǎn)(不同于點(diǎn)),滿足:對(duì)于圓上的任一點(diǎn),都有為一常數(shù),試求出所有滿足條件的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知直角坐標(biāo)平面上點(diǎn)Q(2,0)和圓C:x2+y2=1,動(dòng)點(diǎn)M到圓C的切線長(zhǎng)與|MQ|的比等于.求動(dòng)點(diǎn)M的軌跡方程,并說(shuō)明它表示什么.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
圓內(nèi)有一點(diǎn),為過(guò)點(diǎn)且傾斜角為的弦.
(1)當(dāng)時(shí),求;
(2)當(dāng)弦被點(diǎn)平分時(shí),求出直線的方程;
(3)設(shè)過(guò)點(diǎn)的弦的中點(diǎn)為,求點(diǎn)的坐標(biāo)所滿足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓的圓心與點(diǎn)關(guān)于直線對(duì)稱(chēng),直線與圓相交于兩點(diǎn),且,求圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知☉O:x2+y2=1和定點(diǎn)A(2,1),由☉O外一點(diǎn)P(a,b)向☉O引切線PQ,切點(diǎn)為Q,且滿足|PQ|=|PA|.
(1)求實(shí)數(shù)a,b間滿足的等量關(guān)系.
(2)求線段PQ長(zhǎng)的最小值.
(3)若以P為圓心所作的☉P與☉O有公共點(diǎn),試求半徑取最小值時(shí)☉P的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線C上的動(dòng)點(diǎn)P()滿足到定點(diǎn)A(-1,0)的距離與到定點(diǎn)B(1,0)距離之比為
(1)求曲線C的方程。
(2)過(guò)點(diǎn)M(1,2)的直線與曲線C交于兩點(diǎn)M、N,若|MN|=4,求直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知半徑為2,圓心在直線上的圓C.
(Ⅰ)當(dāng)圓C經(jīng)過(guò)點(diǎn)A(2,2)且與軸相切時(shí),求圓C的方程;
(Ⅱ)已知E(1,1),F(1,-3),若圓C上存在點(diǎn)Q,使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com