6.“2<m<6”是“方程$\frac{{x}^{2}}{m-2}$+$\frac{{y}^{2}}{6-m}$=1表示橢圓”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不必要也不充分條件

分析 根據(jù)充分條件和必要條件的定義進行判斷即可.

解答 解:若$\frac{{x}^{2}}{m-2}$+$\frac{{y}^{2}}{6-m}$=1表示橢圓,
則$\left\{\begin{array}{l}{m-2>0}\\{6-m>0}\\{m-2≠6-m}\end{array}\right.$,即$\left\{\begin{array}{l}{m>2}\\{m<6}\\{m≠4}\end{array}\right.$,即2<m<6且m≠4,
則“2<m<6”是“方程$\frac{{x}^{2}}{m-2}$+$\frac{{y}^{2}}{6-m}$=1表示橢圓”的必要不充分條件,
故選:B

點評 本題主要考查充分條件和必要條件的判斷,根據(jù)橢圓方程的定義求出m的等價條件是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個頂點為A(2,0),離心率為$\frac{\sqrt{2}}{2}$.直線y=k(x-1)與橢圓C交于不同的兩點M,N.
(1)求橢圓C的方程;
(2)當k=1時,求△AMN的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.與直線2x+3y-6=0平行且過點(1,-1)的直線方程為2x+3y+1=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知圓C:x2+y2-4x-14y+45=0及點Q(-2,3).
(1)若M為圓C上任一點,求|MQ|的最大值和最小值;
(2)若實數(shù)m,n滿足m2+n2-4m-14n+45=0,求k=$\frac{n-3}{m+2}$的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知$f(x)=\left\{\begin{array}{l}{log_a}({a{x^2}-4x+4}),x≥1\\({3-a})x+b,x≤1\end{array}\right.$在(-∞,+∞)上滿足$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}>0$,則b的取值范圍是( 。
A.(-∞,0)B.[1,+∞)C.(-1,1)D.[0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知橢圓E的左、右焦點分別為F1、F2,過F1且斜率為2的直線交橢圓E于P、Q兩點,若△PF1F2為直角三角形,則橢圓E的離心率為$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知隨機變量X~B(n,$\frac{1}{3}$),若D(x)=$\frac{4}{3}$,則P(X=2)=( 。
A.$\frac{13}{15}$B.$\frac{2}{81}$C.$\frac{13}{243}$D.$\frac{80}{243}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知向量$\overrightarrow{OP}=(-8m,-6cos\frac{π}{3})$與單位向量(1,0)所成的角為θ,且$cosθ=-\frac{4}{5}$,則m的值為( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=|x-2|+|x+a|.
(1)若a=1,解不等式 f(x)≤2|x-2|;
(2)若f(x)≥2恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案