已知拋物線C的方程為x2y,過點A(0,-1)和點B(t,3)的直線與拋物線C沒有公共點,則實數(shù)t的取值范圍是(  ).
A.(-∞,-1)∪(1,+∞)
B.
C.∪(2,+∞)
D.
D
直線AB方程為yx-1,與拋物線方程x2y聯(lián)立得x2x=0,直線與拋物線沒有公共點,故Δ-2<0,解得t>t<-.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線過點且與拋物線交于A、B兩點,以弦AB為直徑的圓恒過坐標(biāo)原點O.

(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)設(shè)是直線上任意一點,求證:直線QA、QM、QB的斜率依次成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點F(,0),直線l:x=-,點B是l上的動點,若過B垂直于y軸的直線與線段BF的垂直平分線交于點M,則點M的軌跡是(  )
A.雙曲線B.橢圓
C.圓D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線方程為x2=4y,過點M(0,m)的直線交拋物線于A(x1,y1),B(x2y2)兩點,且x1x2=-4,則m的值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)直線lxym=0與拋物線Cy2=4x交于不同兩點A,B,F為拋物線的焦點.
(1)求△ABF的重心G的軌跡方程;
(2)如果m=-2,求△ABF的外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)拋物線C:y2=2px(p>0)的焦點為F,點MC上,|MF|=5,若以MF為直徑的圓過點(0,2),則C的方程為(  ).
A.y24xy2=8x B.y2=2xy2=8x
C.y2=4xy2=16xD.y2=2xy2=16x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知過拋物線y2=2px(p>0)的焦點F且垂直于拋物線的對稱軸的直線交拋物線于A,B兩點,若線段AB的長為8,則p的值為(  ).
A.1B.2 C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過拋物線的焦點作傾斜角為的直線與拋物線分別交于,兩點(軸左側(cè)),則       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

給出如下四個命題:
①若“”為假命題,則均為假命題;
②命題“若,則”的否命題為“若,則”;
③命題“任意”的否定是“存在”;
④在中,“”是“”的充要條件.
其中不正確命題的個數(shù)是    (    )
A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊答案