【題目】關(guān)于某設(shè)備的使用年限和所支出的維修費(fèi)用(萬(wàn)元),有如下的統(tǒng)計(jì)資料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

(1)如由資料可知對(duì)呈線形相關(guān)關(guān)系.試求:線形回歸方程;(

(2)估計(jì)使用年限為10年時(shí),維修費(fèi)用是多少?

【答案】(1) (2) 12.38萬(wàn)元.

【解析】

試題分析:(1)根據(jù)所給的數(shù)據(jù),做出變量x,y的平均數(shù),根據(jù)最小二乘法做出線性回歸方程的系數(shù)b,在根據(jù)樣本中心點(diǎn)一定在線性回歸方程上,求出a的值,從而得到線性回歸方程;

(2)當(dāng)自變量為10時(shí),代入線性回歸方程,求出當(dāng)年的維修費(fèi)用,這是一個(gè)預(yù)報(bào)值..

試題析:解:(1)

6分;

于是.

所以線形回歸方程為: 8分;

(2)當(dāng)時(shí),,

即估計(jì)使用10年是維修費(fèi)用是12.38萬(wàn)元. 12分;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在直三棱柱中,平面側(cè)面,且

1)求證:

2)若直線與平面所成角的正弦值為,求銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)處取得極值.

1的值;

2若對(duì)任意的,都有成立其中是函數(shù)的導(dǎo)函數(shù),求實(shí)數(shù)的最小值;

3證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,游客從某旅游景區(qū)的景點(diǎn)處下上至處有兩種路徑一種是從沿直線步行到另一種是先從沿索道乘纜車(chē)到,然后從沿直線步行到.現(xiàn)有甲、乙兩位游客從處下山,甲沿勻速步行,速度為.在甲出發(fā),乙從乘纜車(chē)到處停留,再?gòu)?/span>勻速步行到,假設(shè)纜車(chē)勻速直線運(yùn)動(dòng)的速度為山路長(zhǎng)為1260,經(jīng)測(cè)量

1求索道的長(zhǎng);

2問(wèn):乙出發(fā)多少,乙在纜車(chē)上與甲的距離最短?

3為使兩位游客在處互相等待的時(shí)間不超過(guò),乙步行的速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修45:不等式選講

已知函數(shù)fx=|2x-a|+a.

1若不等式fx6的解集為{x|-2x3},求實(shí)數(shù)a的值;

21的條件下,若存在實(shí)數(shù)n使fnm-f-n成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量共線,其中AABC的內(nèi)角.

1)求角的大。

2)若BC=2,求ABC面積的最大值,并判斷S取得最大值時(shí)ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某地區(qū)某高傳染性病毒流行期間,為了建立指標(biāo)顯示疫情已受控制,以便向該地區(qū)居民顯示可以過(guò)正常生活,有公共衛(wèi)生專家建議的指標(biāo)是“連續(xù)7天每天新增感染人數(shù)不超過(guò)5人”,根據(jù)連續(xù)7天的新增病例數(shù)計(jì)算,下列各個(gè)選項(xiàng)中,一定符合上述指標(biāo)的是__________

①平均數(shù); ②標(biāo)準(zhǔn)差; ③平均數(shù)且標(biāo)準(zhǔn)差

④平均數(shù)且極差小于或等于2; ⑤眾數(shù)等于1且極差小于或等于4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)店經(jīng)營(yíng)的一種商品進(jìn)行進(jìn)價(jià)是每件10元,根據(jù)一周的銷售數(shù)據(jù)得出周銷售量(件)與單價(jià)(元)之間的關(guān)系如下圖所示,該網(wǎng)店與這種商品有關(guān)的周開(kāi)支均為25元.

(1)根據(jù)周銷售量圖寫(xiě)出(件)與單價(jià)(元)之間的函數(shù)關(guān)系式;

(2)寫(xiě)出利潤(rùn)(元)與單價(jià)(元)之間的函數(shù)關(guān)系式;當(dāng)該商品的銷售價(jià)格為多少元時(shí),周利潤(rùn)最大?并求出最大周利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)p-1x<2qx<a,若qp的必要條件,則a的取值范圍是(

A.a≤-1B.a≤-1a2C.a≥2D.-1≤a<2

查看答案和解析>>

同步練習(xí)冊(cè)答案