【題目】某網(wǎng)店經(jīng)營的一種商品進(jìn)行進(jìn)價是每件10元,根據(jù)一周的銷售數(shù)據(jù)得出周銷售量(件)與單價(元)之間的關(guān)系如下圖所示,該網(wǎng)店與這種商品有關(guān)的周開支均為25元.
(1)根據(jù)周銷售量圖寫出(件)與單價(元)之間的函數(shù)關(guān)系式;
(2)寫出利潤(元)與單價(元)之間的函數(shù)關(guān)系式;當(dāng)該商品的銷售價格為多少元時,周利潤最大?并求出最大周利潤.
【答案】(1), (2)當(dāng)該商品的銷售價格為元時,周利潤最大為元.
【解析】試題分析:(1)在這兩個區(qū)間上,函數(shù)圖像都是線段,故利用斜截式,列方程組,可求得其函數(shù)表達(dá)式;(2)利潤是銷售量乘以每件的利潤,再減去固定成本,結(jié)合(1)求得的表達(dá)式,可求得關(guān)于的關(guān)系式,并利用二次函數(shù)配方法可求得最大值.
試題解析:
(1)①設(shè)當(dāng)時, ,代入點,
得,
②設(shè)當(dāng)時, ,代入點,
得,
故周銷量(件)與單價(元)之間的函數(shù)關(guān)系式
為
(2),
①當(dāng)時, ,所以時, ;
②當(dāng)時, ,
可知在單調(diào)遞減,所以,
由①②可知,當(dāng)時, ,
故當(dāng)該商品的銷售價格為元時,周利潤最大為元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)將函數(shù)的圖像向左平移個單位后,再將圖像上各點的橫坐標(biāo)伸長到原來的倍,縱坐標(biāo)不變,得到函數(shù)的圖像,求的最大值及取得最大值時的的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于某設(shè)備的使用年限和所支出的維修費用(萬元),有如下的統(tǒng)計資料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)如由資料可知對呈線形相關(guān)關(guān)系.試求:線形回歸方程;(,)
(2)估計使用年限為10年時,維修費用是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—1:幾何證明選講
如圖,已知AP是⊙O的切線,P為切點,AC是⊙O的割線,與⊙O交于B、C兩點,圓心O在∠PAC的內(nèi)部,點M是BC的中點.
(1) 證明:A、P、O、M四點共圓;
(2)求∠OAM+∠APM的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列中,, 且.
(1)求的值及數(shù)列的通項公式;
(2)令, 數(shù)列的前項和為, 試比較與的大小;
(3)令, 數(shù)列的前項和為, 求證: 對任意, 都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】①您所購買的是名牌產(chǎn)品,您認(rèn)為該產(chǎn)品的知名度
A.很高 B.—般 C.很低
②你們家有幾個孩子?
③你們班有幾個高個子同學(xué)? .
④你認(rèn)為數(shù)學(xué)學(xué)習(xí)
A.較困難 B.較容易 C.沒感覺
以上問題符合調(diào)查問卷要求的是( )
A.① B.② C.③D.④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com