分析 (1)利用CD∥AB,過點D的圓的切線DE與BA的延長線交于E點,得出角相等,即可證明:∠CDA=∠EDB;
(2)證明△BDC≌△EDA,可得BC=EA,由切割線定理可得DE2=EA•EB,即可求線段BE的長.
解答 (1)證明:∵CD∥AB,
∴∠BDC=∠ABD,
∵DE是圓的切線,
∴∠ADE=∠ABD,
∴∠ADE=∠BDC,
∴∠CDA=∠EDB;
(2)解:在△BCD,△ADE中,
∵BC=CD=AD,∠BDC=∠EDA,∠BCD=∠EAD,
∴△BDC≌△EDA,
∴BC=EA,
由切割線定理可得DE2=EA•EB,
∴49=5BE,
∴BE=$\frac{49}{5}$.
點評 本題考查圓的切線的性質(zhì),考查三角形全等的判定與性質(zhì),考查切割線定理的運用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在區(qū)間[$\frac{2π}{3}$,$\frac{7π}{6}$]上是增函數(shù) | B. | 在區(qū)間[-π,-$\frac{π}{2}$]上是減函數(shù) | ||
C. | 在區(qū)間[-$\frac{π}{3}$,$\frac{π}{4}$]上是增函數(shù) | D. | 在區(qū)間[$\frac{π}{3}$,$\frac{5π}{6}$]上是減函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com