把函數(shù)f(x)=sin2x的圖象向左平移
π
4
個(gè)單位,所得圖象的解析式是(  )
A.y=sin(2x+
π
4
B.y=sin(2x-
π
4
C.y=cos2xD.y=-cos2x
把函數(shù)f(x)=sin2x的圖象向左平移
π
4
個(gè)單位,所得圖象的解析式是y=sin2(x+
π
4
)=cos2x,
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin2ωx+
3
sinωxcosωx-
1
2
(x∈R,ω>0),若f(x)
的最小正周期為π.
(1)求f(x)的表達(dá)式和f(x)的單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)先縮短到原來的
1
2
,把所得到的圖象再向左平移
π
6
單位,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在區(qū)間[-
π
8
,
π
6
]
上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

先把函數(shù)f(x)=sinx的圖象上的所有的點(diǎn)向左平行移動(dòng)個(gè)單位長度得函數(shù)f1(x)的圖象,再把f1(x)的圖象上所有的點(diǎn)的橫坐標(biāo)伸長到原來的2倍得函數(shù)f2(x)的圖象,則f2(x)等于(    )

A.sin12(x-)        B.sin(12x+)

C.sin2(x-)         D.sin(2x+)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知將函數(shù)y=cos2數(shù)學(xué)公式-sin2數(shù)學(xué)公式+2數(shù)學(xué)公式sin數(shù)學(xué)公式cos數(shù)學(xué)公式的圖象上所有點(diǎn)向左平移數(shù)學(xué)公式個(gè)單位,再把所得的圖象上所有點(diǎn)得橫坐標(biāo)變?yōu)樵瓉淼?img class='latex' alt='數(shù)學(xué)公式' src='http://thumb.1010pic.com/pic5/latex/13.png' />倍(縱坐標(biāo)不變),得到函數(shù)f(x)的圖象.
(I)求函數(shù)f(x)的表達(dá)式及f(x)的最小正周期;
(II)求f(x)的單調(diào)遞減區(qū)間及f(x)在區(qū)間[0,數(shù)學(xué)公式]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年遼寧省丹東市四校協(xié)作體高三摸底(零診)數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知將函數(shù)y=cos2-sin2+2sincos的圖象上所有點(diǎn)向左平移個(gè)單位,再把所得的圖象上所有點(diǎn)得橫坐標(biāo)變?yōu)樵瓉淼?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/20131025123433531585930/SYS201310251234335315859016_ST/6.png">倍(縱坐標(biāo)不變),得到函數(shù)f(x)的圖象.
(I)求函數(shù)f(x)的表達(dá)式及f(x)的最小正周期;
(II)求f(x)的單調(diào)遞減區(qū)間及f(x)在區(qū)間[0,]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年遼寧省丹東市四校協(xié)作體高三摸底(零診)數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知將函數(shù)y=cos2-sin2+2sincos的圖象上所有點(diǎn)向左平移個(gè)單位,再把所得的圖象上所有點(diǎn)得橫坐標(biāo)變?yōu)樵瓉淼?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/20131025123423438909246/SYS201310251234234389092016_ST/6.png">倍(縱坐標(biāo)不變),得到函數(shù)f(x)的圖象.
(I)求函數(shù)f(x)的表達(dá)式及f(x)的最小正周期;
(II)求f(x)的單調(diào)遞減區(qū)間及f(x)在區(qū)間[0,]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案