13.已知sin(540°+α)=-$\frac{4}{5}$,則cos(α-270°)=(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{3}{5}$D.$-\frac{3}{5}$

分析 先利用sin(k•360°+α)=sinα化簡sin(540°+α),再利用誘導公式化簡求出sinα的值,同理化簡cos(α-270°)可得答案.

解答 解:根據(jù)sin(k•360°+α)=sinα公式,
將sin(540°+α)化簡為:
sin(540°+α)=sin(360°+180°+α)=(sin180°+α)=-sinα=-$\frac{4}{5}$,
可得:sinα=$\frac{4}{5}$,
那么:cos(α-270°)=cos(270°-α)=-sina=-$\frac{4}{5}$,
故選B.

點評 本題考查的知識點是誘導公式,難度不大,屬于基礎(chǔ)題

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

17.將函數(shù)f(x)=2sin(ωx+$\frac{π}{4}$)(ω>0)的圖象向右平移$\frac{π}{4ω}$個單位,得到函數(shù)y=g(x)的圖象,若y=g(x)在[-$\frac{π}{6}$,$\frac{π}{3}$]上為增函數(shù),則ω的最大值為(  )
A.3B.2C.$\frac{3}{2}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.本學期,學校食堂為了更好地服務廣大師生員工,對師生員工的主食購買情況做了一個調(diào)查(主食只供應米飯和面條,且就餐人數(shù)保持穩(wěn)定),經(jīng)調(diào)查統(tǒng)計發(fā)現(xiàn)凡是購買米飯的人下一次會有20%的人改買面條,而購買面條的人下一次會有30%的人改買米飯.若用an,bn分別表示第n次購買米飯、面條的人員比例,假設(shè)第一次購買時比例恰好相等,即${a_1}={b_1}=\frac{1}{2}$
(1)求an+bn的值
(2)寫出數(shù)列{an}的遞推關(guān)系式
(3)求出數(shù)列{an}和{bn}的通項公式,并指出隨著時間推移(假定就餐人數(shù)為2000)食堂的主食應該準備米飯和面條各大約多少份,才能使廣大師生員工滿意.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓O:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點($\sqrt{3}$,-$\frac{1}{2}$),A(x0,y0)(x0y0≠0),其上頂點到直線$\sqrt{3}$x+y+3=0的距離為2,過點A的直線l與x,y軸的交點分別為M、N,且$\overrightarrow{AN}$=2$\overrightarrow{MA}$.
(1)證明:|MN|為定值;
(2)如圖所示,若A,C關(guān)于原點對稱,B,D關(guān)于原點對稱,且$\overrightarrow{BD}$=λ$\overrightarrow{NM}$,求四邊形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{{2}^{x}+2}{2},x≤1}\\{|lo{g}_{2}(x-1)|,x>1}\end{array}\right.$,則函數(shù)F(x)=f[f(x)]-2f(x)-$\frac{3}{2}$的零點個數(shù)是( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.從集合{1,2,3,4,5}任取一元素a,從集合{1,2,3}任取一元素b,則b>a的概率是$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,扇形OAB的半徑為1,圓心角為120°,四邊形PQRS是扇形的內(nèi)接矩形,當其面積最大時,求點P的位置,并求此最大面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知i是虛數(shù)單位,若z(1+i)=1+3i,則z=( 。
A.2+iB.2-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在平面直角坐標系中,點O為坐標原點,動點P(x,y)與定點F(-1,0)的距離和它到定直線x=-2的距離之比是$\frac{\sqrt{2}}{2}$.
(1)求動點P的軌跡C的方程;
(2)過F作曲線C的不垂直于y軸的弦AB,M為AB的中點,直線OM與${C_1}:{({x-4})^2}+{y^2}=32$交于P,Q兩點,求四邊形APBQ面積的最大值.

查看答案和解析>>

同步練習冊答案