在△ABC中,“cosA+sinA=cosB+sinB”是“C=90°”的( )
A.充分非必要條件
B.必要非充分條件
C.充要條件
D.非充分非必要條件
【答案】分析:對(duì)兩個(gè)條件,“cosA+sinA=cosB+sinB”與“C=90°”的關(guān)系,拼命結(jié)合三角函數(shù)的定義,對(duì)選項(xiàng)進(jìn)行判斷
解答:解:“C=90°”成立時(shí),有A+B=90°,故一定有“cosA+sinA=cosB+sinB”成立
又當(dāng)A=B時(shí)cosA+sinA=cosB+sinB”成立,即“cosA+sinA=cosB+sinB”得不出“C=90°”成立
所以“cosA+sinA=cosB+sinB”是“C=90°”的必要非充分條件
故選B.
點(diǎn)評(píng):本題考查充要條件,解答本題要熟練理解掌握三角函數(shù)的定義,充分條件,必要條件的定義,且能靈活運(yùn)用列舉法的技巧對(duì)兩個(gè)命題的關(guān)系進(jìn)行驗(yàn)證,本題考查了推理論證的能力,解題時(shí)靈活選擇證明問(wèn)題的方法是解題成功的保證.