10.如果a>b,則下列不等式正確的是( 。
A.$\frac{1}{a}>\frac{1}$B.2a>2bC.|a|>|b|D.a2>b2

分析 舉反例可以判斷A,C,D根據(jù)指數(shù)函數(shù)的單調(diào)性可判斷B

解答 解:對于A,當a=-1,b=-2時,則不成立,
對于B:根據(jù)指數(shù)函數(shù)的單調(diào)性可得正確,
對于C:當a=0,b=-1時,則不成立,
對于D:當a=0,b=-1時,則不成立,
故選:B

點評 本題考查了不等式的性質(zhì)和函數(shù)指數(shù)的單調(diào)性,屬于基礎題

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.在平面四邊形ABCD中,已知AB=CD=2,AD=1,BC=3,且∠BAD+∠BCD=180°,則△ABC的外接圓的面積為( 。
A.$\frac{13}{4}π$B.$\frac{9}{4}π$C.$\frac{5}{4}π$D.$\frac{7}{3}π$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=xln x.
(1)求f(x)的單調(diào)區(qū)間;
(2)若對所有的x≥1都有f(x)≥ax-1,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知sin($\frac{3π}{2}$+α)=$\frac{1}{3}$,則cos(π-2α)的值等于( 。
A.$\frac{7}{9}$B.-$\frac{7}{9}$C.$\frac{2}{9}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知不等式x2-2x-3<0的解集是A,集合B=(-3,2),不等式x2+ax+b<0的解集是A∩B,那么a=( 。
A.-3B.1C.-1D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.某人午覺醒來,打開收音機想聽電臺整點報時,則他等待不多于10分鐘的概率是( 。
A.$\frac{1}{6}$B.$\frac{1}{5}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.設函數(shù)f(x)=$\frac{{{e^2}{x^2}+1}}{x},g(x)=\frac{{{e^2}x}}{e^x}$,對任意x1、x2∈(0,+∞),不等式$\frac{{f({x_1})}}{k+1}≥\frac{{g({x_2})}}{k}$,恒成立,則正數(shù)k的取值范圍是k≥1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在三棱柱ABC-A1B1C1中,側棱與底面垂直,AB=AA1=2,∠ABC=60°,BC=4,點M,N分別為A1B 和B1C1的中點.
(1)證明:MN∥平面A1ACC1
(2)證明:A1M⊥平面MAC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=|x-1|-|2x|.
(1)解不等式f(x)>-3;
(2)求函數(shù)y=f(x)的圖象與x軸圍成的三角形的面積.

查看答案和解析>>

同步練習冊答案