【題目】在平面直角坐標(biāo)系中,點(diǎn)是曲線為參數(shù))上的動(dòng)點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,以極點(diǎn)為中心,將線段順時(shí)針旋轉(zhuǎn)得到,設(shè)點(diǎn)的軌跡為曲線

1)求曲線,的極坐標(biāo)方程;

2)在極坐標(biāo)系中,點(diǎn)的坐標(biāo)為,射線與曲線分別交于兩點(diǎn),求的面積.

【答案】1;2.

【解析】

1)因?yàn)榍,可得的直角坐標(biāo)方程為,根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式:,結(jié)合已知,即可求得答案.

2)由題意知點(diǎn)到射線的距離為,由(1)知的極坐標(biāo)方程為,即可求得答案.

1曲線

的直角坐標(biāo)方程為,

其極坐標(biāo)方程為

設(shè)點(diǎn)的極坐標(biāo)為,則對(duì)應(yīng)的點(diǎn)的極坐標(biāo)為

點(diǎn)上,將線段順時(shí)針旋轉(zhuǎn)得到,設(shè)點(diǎn)的軌跡為曲線

的極坐標(biāo)方程為

2)由題意知點(diǎn)到射線的距離為,

由(1)知的極坐標(biāo)方程為,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平行四邊形中,,,,以對(duì)角線為折痕把折起,使點(diǎn)到圖2所示點(diǎn)的位置,使得.

(Ⅰ)求證:平面平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)().

1)若,求函數(shù)的單調(diào)區(qū)間;

2)當(dāng)時(shí),若函數(shù)上的最大值和最小值的和為1,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面,,的中點(diǎn).

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求直線的普通方程和曲線的直角坐標(biāo)方程;

2)若直線與曲線交于、兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性;

2)當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖是一塊平行四邊形園地,經(jīng)測(cè)量,.擬過(guò)線段上一點(diǎn) 設(shè)計(jì)一條直路(點(diǎn)在四邊形的邊上,不計(jì)直路的寬度),將該園地分為面積之比為的左,右兩部分分別種植不同花卉.設(shè)(單位:m.

1)當(dāng)點(diǎn)與點(diǎn)重合時(shí),試確定點(diǎn)的位置;

2)求關(guān)于的函數(shù)關(guān)系式;

3)試確定點(diǎn)的位置,使直路的長(zhǎng)度最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某調(diào)查機(jī)構(gòu)為了了解某產(chǎn)品年產(chǎn)量x()對(duì)價(jià)格y(千克/)和利潤(rùn)z的影響,對(duì)近五年該產(chǎn)品的年產(chǎn)量和價(jià)格統(tǒng)計(jì)如下表:

x

1

2

3

4

5

y

17.0

16.5

15.5

13.8

12.2

1)求y關(guān)于x的線性回歸方程

2)若每噸該產(chǎn)品的成本為12千元,假設(shè)該產(chǎn)品可全部賣(mài)出,預(yù)測(cè)當(dāng)年產(chǎn)量為多少時(shí),年利潤(rùn)w取到最大值?

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于圓周率π,數(shù)學(xué)發(fā)展史上出現(xiàn)過(guò)許多很有創(chuàng)意的求法,如著名的浦豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),我們也可以通過(guò)設(shè)計(jì)下面的實(shí)驗(yàn)來(lái)估計(jì)的值:先請(qǐng)全校名同學(xué)每人隨機(jī)寫(xiě)下一個(gè)都小于的正實(shí)數(shù)對(duì);再統(tǒng)計(jì)兩數(shù)能與構(gòu)成鈍角三角形三邊的數(shù)對(duì)的個(gè)數(shù);最后再根據(jù)統(tǒng)計(jì)數(shù)估計(jì)的值,那么可以估計(jì)的值約為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案