函數(shù)y=tan(x-
π
4
)的定義域是(  )
A、{x|x≠
π
4
,x∈R}
B、{x|x≠
4
,x∈R}
C、{x|x≠kπ+
π
4
,x∈R}
D、{x|x≠kπ+
4
,x∈R}
考點(diǎn):正切函數(shù)的定義域
專題:三角函數(shù)的圖像與性質(zhì)
分析:由正切函數(shù)的定義得,x-
π
4
≠kπ+
π
2
,(k∈z),求出x的取值范圍.
解答:解:∵y=tan(x-
π
4
),
∴x-
π
4
≠kπ+
π
2
,(k∈z),
∴x≠kπ+
4
,(k∈z),
∴函數(shù)的定義域是{x|x≠kπ+
4
,k∈z}
故選:D.
點(diǎn)評:本題考查了正切函數(shù)的定義域問題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個角在平面α內(nèi)的投影不可能是下列圖形中的( 。
A、點(diǎn)B、射線C、直線D、角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

相關(guān)指數(shù)R2、殘差平方和與模型擬合效果之間的關(guān)系是(  )
A、R2的值越大,殘差平方和越小,擬合效果越好
B、R2的值越小,殘差平方和越大,擬合效果越好
C、R2的值越大,殘差平方和越大,擬合效果越好
D、以上說法都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=loga(x-1)+3(a>0且a≠1)的圖象恒過定點(diǎn)P,若角a的頂點(diǎn)與原點(diǎn)重合,始邊與x軸的正半軸重合,終邊經(jīng)過點(diǎn)P.則sin2a-sin2a的值為( 。
A、
5
13
B、-
5
13
C、
3
13
D、-
3
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

-a-b-2
ab
=
-b
-
-a
,則( 。
A、a<bB、a>b
C、a<b<0D、b≤a≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=cos(ωx+φ)-
3
sin(ωx+φ),(ω>0,|φ|<
π
2
)且其圖象相鄰的兩條對稱軸為x=0,x=
π
2
,則( 。
A、y=f(x)的最小正周期為2π,且在(0,π)上為增函數(shù)
B、y=f(x)的最小正周期為π,且在 (0,π)上為減函數(shù)
C、y=f(x)的最小正周期為π,且在(0,
π
2
)上為增函數(shù)
D、y=f(x)的最小正周期為π,且在(0,
π
2
)上為減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=tan(2x-
π
3
).
(1)求f(x)的定義域、周期和單調(diào)區(qū)間;
(2)求不等式-1≤f(x)≤
3
的解集;
(3)求f(x),x∈[0,π]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列關(guān)于隨機(jī)抽樣的說法不正確的是( 。
A、簡單隨機(jī)抽樣是一種逐個抽取不放回的抽樣
B、系統(tǒng)抽樣和分層抽樣中每個個體被抽到的概率都相等
C、有2008個零件,先用隨機(jī)數(shù)表法剔除8個,再用系統(tǒng)抽樣方法抽取抽取20個作為樣本,每個零件入選樣本的概率都為1/2000
D、當(dāng)總體是由差異明顯的幾個部分組成時適宜采取分層抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的外接圓的圓心為O,半徑為1,2
AO
=
AB
+
AC
,且|
AO
|=|
AB
|
,則向量
AB
BC
方向上的投影為(  )
A、
1
2
B、
3
2
C、-
1
2
D、-
3
2

查看答案和解析>>

同步練習(xí)冊答案