2.已知實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-2y+4≥0}\\{x-2≤0}\end{array}\right.$,則z=x-y的最大值與最小值之差為( 。
A.5B.6C.3D.4

分析 由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案

解答 解:由約束條件約束條件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-2y+4≥0}\\{x-2≤0}\end{array}\right.$,作出可行域如圖,
易得A(2,3),由$\left\{\begin{array}{l}{x+y-2=0}\\{x-2y+4=0}\end{array}\right.$
可得B(0,2)
化目標函數(shù)z=x-y為y=x-z,
由圖可知,當直線y=x-z過B時,直線在y軸上的截距最大,
z有最小值為-2.
當直線y=x-z過(2,0)時,直線在y軸上的截距最小,
z有最大值為2.
則z=x-y的最大值與最小值之差為:4;
故選D.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且acosC,bcosA,ccosA成等差數(shù)列.
(1)求角A的大;
(2)若a=3,$\overrightarrow{AD}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,求$|\overrightarrow{AD}|$的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若關(guān)于x的方程f(x)=mx2+3x-m-2有且只有一個零點在區(qū)間(0,1)內(nèi),則實數(shù)m的取值范圍是(-2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.不等式${({\frac{1}{3}})^{x-1}}$≤81的解集為[-3,+∞)..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖所示,在正方體ABCD-A1B1C1D1中,O為底面ABCD的中心,P是DD1的中點,設Q是CC1上的點.
(1)當點Q在什么位置時,平面D1BQ∥平面PAO?
(2)異面直線B1C與D1B所成角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知等差數(shù)列{an}滿足已知等差數(shù)列{ an }滿足a2=0,a6+a8=-10
(I)求數(shù)列{an }的通項公式;
(II)求數(shù)列{$\frac{{a}_{n}}{{2}^{n-1}}$}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若a=20.1,b=logπ3,c=log2sin$\frac{5π}{7}$,則( 。
A.b>a>cB.a>b>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知拋物線C:y2=4x的焦點為F,點M在拋物線C上,MQ垂直準線l于點Q,若△MQF是等邊三角形,則$\overrightarrow{FQ}•\overrightarrow{FM}$的值為8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標.石景山古城地區(qū)2013年2月6日至15日每天的PM2.5監(jiān)測數(shù)據(jù)如莖葉圖所示.
(1)小陳在此期間的某天曾經(jīng)來此地旅游,求當天PM2.5日均監(jiān)測數(shù)據(jù)未超標的概率;
(2)從所給10天的數(shù)據(jù)中任意抽取三天數(shù)據(jù),記ξ表示抽到PM2.5監(jiān)測數(shù)據(jù)超標的天數(shù),求ξ的分布列及期望.

查看答案和解析>>

同步練習冊答案