【題目】某股票在30天內(nèi)每股的交易價(jià)格(元)與時(shí)間(天)組成有序數(shù)對(duì),點(diǎn)落在如圖所示的兩條線段上,該股票在30天內(nèi)的日交易量(萬(wàn)股)與時(shí)間(天)的部分?jǐn)?shù)據(jù)如表所示:

1)根據(jù)提供的圖象,寫(xiě)出該股票每股的交易價(jià)格與時(shí)間所滿足的函數(shù)關(guān)系式;

2)根據(jù)表中數(shù)據(jù)確定日交易量與時(shí)間的一次函數(shù)關(guān)系式;

3)在(1)(2)的結(jié)論下,若該股票的日交易額為(萬(wàn)元),寫(xiě)出關(guān)于的函數(shù)關(guān)系式,并求在這30天中第幾天的交易額最大,最大是多少?

【答案】1;(2,;(3)第15天的交易額最大,最大是125萬(wàn)元

【解析】

1)根據(jù)圖像,直接寫(xiě)出分段函數(shù)

2))設(shè),代入數(shù)據(jù),計(jì)算得到答案.

3)根據(jù)(1)(2)得到,分別計(jì)算最大值得到函數(shù)最大值.

1)根據(jù)圖像,直接寫(xiě)出分段函數(shù):

2)設(shè),為常數(shù)),把,代入,

,解得

所以日交易量與時(shí)間的一次函數(shù)關(guān)系式為,,

3)由(1)(2),可得

當(dāng),時(shí),有最大值,即,此時(shí);

當(dāng),時(shí),的增大而減小,

所以這30天中的第15天的交易額最大,最大是125萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1100100個(gè)自然數(shù)中,每次取出不同的兩個(gè)數(shù),使它們的和大于100,不同取法共有(  ).

A. 50 B. 100 C. 1275 D. 2500

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )

A. 命題,”,則是真命題

B. ”是“”的必要不充分條件

C. 命題“,”的否定是:“

D. ”是“上為增函數(shù)”的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)市場(chǎng)分析,廣饒縣馳中集團(tuán)某蔬菜加工點(diǎn),當(dāng)月產(chǎn)量在10噸至25噸時(shí),月生產(chǎn)總成本(萬(wàn)元)可以看成月產(chǎn)量(噸)的二次函數(shù).當(dāng)月產(chǎn)量為10噸時(shí),月總成本為20萬(wàn)元;當(dāng)月產(chǎn)量為15噸時(shí),月總成本最低為17.5萬(wàn)元.

1)寫(xiě)出月總成本(萬(wàn)元)關(guān)于月產(chǎn)量(噸)的函數(shù)關(guān)系;

2)已知該產(chǎn)品銷售價(jià)為每噸1.6萬(wàn)元,那么月產(chǎn)量為多少時(shí),可獲最大利潤(rùn);

3)當(dāng)月產(chǎn)量為多少噸時(shí), 每噸平均成本最低,最低成本是多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某蔬菜基地種植西紅柿,由歷年市場(chǎng)行情得知,從二月一日起的300天內(nèi),西紅柿市場(chǎng)銷售價(jià)與上市時(shí)間的關(guān)系用圖(1)的一條折線表示;西紅柿的種植成本與上市時(shí)間的關(guān)系用圖(2)的拋物線段表示.

(1)寫(xiě)出圖(1)表示的市場(chǎng)售價(jià)與時(shí)間的函數(shù)關(guān)系式寫(xiě)出圖(2)表示的種植成本與時(shí)間的函數(shù)關(guān)系式

(2)認(rèn)定市場(chǎng)售價(jià)減去種植成本為純收益,問(wèn)何時(shí)上市的西紅柿收益最大?(注:市場(chǎng)售價(jià)和種植成本的單位:元/kg,時(shí)間單位:天.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)是定義在(﹣4,4)上的奇函數(shù),滿足f2)=1,當(dāng)﹣4x≤0時(shí),有fx)=

1)求實(shí)數(shù)a,b的值;

2)求函數(shù)fx)在區(qū)間(0,4)上的解析式,并利用定義證明其在該區(qū)間上的單調(diào)性;

3)解關(guān)于m的不等式fm2+1+>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解創(chuàng)建文明城市過(guò)程中學(xué)生對(duì)創(chuàng)建工作的滿意情況,相關(guān)部門對(duì)某中學(xué)的100名學(xué)生進(jìn)行調(diào)查.得到如下的統(tǒng)計(jì)表:

滿意

不滿意

合計(jì)

男生

50

女生

15

合計(jì)

100

已知在全部100名學(xué)生中隨機(jī)抽取1人對(duì)創(chuàng)建工作滿意的概率為.

(1)在上表中相應(yīng)的數(shù)據(jù)依次為;

(2)是否有充足的證據(jù)說(shuō)明學(xué)生對(duì)創(chuàng)建工作的滿意情況與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的最小正周期和單調(diào)遞減區(qū)間;

(2)將函數(shù)的圖象向右平移個(gè)單位后,再將所得圖象的縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,得到的函數(shù)的圖象關(guān)于軸對(duì)稱,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=,x∈(-2,2).

(1) 判斷f(x)的奇偶性并說(shuō)明理由;

(2) 求證:函數(shù)f(x)在(-2,2)上是增函數(shù);

(3) 若f(2+a)+f(1-2a)>0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案